Research Article

Simulation of Carbon Nanotube-Based Enhancement of Cellular Electroporation under Nanosecond Pulsed Electric Fields

Table 2

Model parameters for the simulation.

ParameterDefinitionValue

σm (S·m−1)Extracellular medium conductivity [8]1
σc (S·m−1)Cytoplasmic conductivity [18]0.3
σnp (S·m−1)Nuclear conductivity of cells [19]1.35
σmem (S·m−1)Cell membrane conductivity [20]3 × 10−7
σne (S·m−1)Nuclear membrane conductivity [21]6 × 10−3
σp (S·m−1)Pore conductivity [21]0.22
σCNTs (S·m−1)Carbon nanotube conductivity [8]1 × 108
εmRelative dielectric constant of the extracellular medium [8]80
εcCytoplasmic relative permittivity [22]154.4
εnpNuclear relative dielectric constant [19]52
εmemCell membrane relative dielectric constant [23]8.57
εneNuclear membrane relative dielectric constant [19]28
εCNTsCarbon nanotube relative dielectric constant [8]10000
Ε0 (m−3 kg−1·s−4 A2)Vacuum dielectric constant8.85 × 10−12
Α (m−2·s−1)Creation rate coefficient [24]1.0 × 109
Urest (mV)Resting potential [14]−80
UEP (mV)Characteristic voltage of electroporation [24]170
rp (m)Minimum radius of the hydrophilic pores [14]0.8 × 10−9
N0 (m−2)Initial pore density [14]1.5 × 109
NRelative density of pores [24]0.15
Ω0Energy barrier coefficient of the pore [24]2.65
QPore creation rate [14]2.46
rh (m)Advection velocity constant [25]0.97 × 10−9
F (C·mol−1)Faraday constant9.65 × 10−4
δ′ (J·m−2)Lipid-water interface tension coefficient [25]2 × 10−2
Δ0 (J·m−2)Lipid tension coefficient without electroporation [25]1 × 10−6
Fmax (N·V−2)Maximum electric field force at Vm = 1 V [25]0.7 × 10−9
γ (J·m−1)Lipid-pore energy coefficient [25]1.8 × 10−11
D (m−2·s−1)Aperture diffusion coefficient [25]5 × 10−14
R (J·K−1 mol−1)Gas constant8314
T (K)Absolute temperature295
K (J·K−1)Boltzmann constant1.38 × 10−23