Abstract

Isolated chondrocytes dedifferentiate to a fibroblast-like shape on plastic substrata and proliferate extensively, but rarely form nodules. However, when dissociation is not complete and some cartilage remnants are included in the culture, proliferation decreases and cells grow in a reticular pattern with numerous nodules, which occasionally form small cartilage-like fragments. In an attempt to reproduce this stable chondrogenic state, we added a cartilage protein extract, a sugar extract, and hyaluronan to the medium of previously dedifferentiated chondrocytes. When protein extract was added, many cartilaginous nodules appeared. Hyaluronan produced changes in cell phenotype and behaviour, but not nodule formation. Protein extract has positive effects on the differentiation of previously proliferated chondrocytes and permits nodule formation and the extensive production of type-II collagen. A comparison with incompletely dissociated chondrocyte cultures suggests that the presence of some living cells anchored to their natural extracellular matrix provides some important additional factors for the phenotypical stability of chondrocytes on plastic surfaces. In order to elucidate if it is possible that the incidence of apoptosis is related to the results, we also characterized the molecular traits of apoptosis.