Oxidative Medicine and Cellular Longevity

Oxidative Medicine and Cellular Longevity / 2016 / Article
Special Issue

Harmful and Beneficial Role of ROS

View this Special Issue

Research Article | Open Access

Volume 2016 |Article ID 9816072 | 17 pages | https://doi.org/10.1155/2016/9816072

Periodic Exposure of Keratinocytes to Cold Physical Plasma: An In Vitro Model for Redox-Related Diseases of the Skin

Academic Editor: Sergio Di Meo
Received25 Sep 2015
Revised03 Dec 2015
Accepted20 Dec 2015
Published04 Feb 2016

Abstract

Oxidative stress illustrates an imbalance between radical formation and removal. Frequent redox stress is critically involved in many human pathologies including cancer, psoriasis, and chronic wounds. However, reactive species pursue a dual role being involved in signaling on the one hand and oxidative damage on the other. Using a HaCaT keratinocyte cell culture model, we investigated redox regulation and inflammation to periodic, low-dose oxidative stress after two, six, eight, ten, and twelve weeks. Chronic redox stress was generated by recurrent incubation with cold physical plasma-treated cell culture medium. Using transcriptome microarray technology, we identified both acute ROS-stress responses as well as numerous adaptions after several weeks of redox challenge. We determined a differential expression (2-fold, FDR < 0.01, ) of 260 genes that function in inflammation and redox homeostasis, such as cytokines (e.g., IL-6, IL-8, and IL-10), growth factors (e.g., CSF2, FGF, and IGF-2), and antioxidant enzymes (e.g., HMOX, NQO1, GPX, and PRDX). Apoptotic signaling was affected rather modestly, especially in p53 downstream targets (e.g., BCL2, BBC3, and GADD45). Strikingly, the cell-protective heat shock protein HSP27 was strongly upregulated (). These results suggested cellular adaptions to frequent redox stress and may help to better understand the inflammatory responses in redox-related diseases.

1. Introduction

The skin protects against environmental assaults and is crucial for maintaining the redox homeostasis [1]. The redox state is determined by the balance between pro- and antioxidative processes involving reactive oxygen and nitrogen species (ROS/RNS) [2]. Excessive presence of ROS/RNS is associated with a number of pathologies of the skin. This includes cutaneous malignancies [3], chronic wounds [4], and psoriasis [5]. There were an estimated 3.45 million new cases of cancer and 1.75 million deaths from cancer in Europe in 2012 [6]. The incidence of chronic wounds varies [7] but is expected to affect about 6.5 million patients in the United States [8]. The prevalence of psoriasis ranges from 0% to 8.5% according to age and geographic region [9]. Yet, it is important to recognize the dual role of reactive species, also in the human skin [10]. At low concentrations, they serve as signaling molecules [11] while at higher concentrations they become increasingly cytotoxic [12].

Generally, oxidants can be of exogenous or endogenous origin. The former derive from, for example, ozone, ionizing and nonionizing radiation, cigarette smoke, or invasion of pathogens and their associated infections [13]. The latter spring from oxygen-metabolizing enzymatic reactions (oxidases) and the leakage of superoxide from mitochondria [14]. Upon stimulation, the inducible nitric oxide (NO) synthase contributes to RNS production by generating large amounts of NO for defense or signaling purposes [15], also in keratinocytes [16]. Disturbance of the physiological balance between formation and removal of ROS/RNS (oxidative stress) disrupts the accurate interplay between the affiliated cells [17]. However, most toxic effects are counterbalanced by the complex and finely tuned antioxidative defense system [18].

We here attempted to investigate the redox response of HaCaT keratinocytes over three months. Frequent exposure to reactive species was generated using cold physical plasma. Cold plasma has been shown to have therapeutic benefit in diseases of the skin, such as chronic wounds and psoriasis [1921]. The advantage of cold physical plasma over single oxidative agents is that it provides a more complex mixture of reactive molecules. Plasma was used to mimic the frequent redox stress apparent in redox-related diseases on the one hand and to investigate the effect of its long-term use on the other. We hypothesized that the cellular responses would substantially differ in cells exposed to rather acute (up to two weeks) or chronic (up to twelve weeks) oxidative challenge. Understanding these differences may help to better understand the skin tissue response in pathologies that involve chronic redox stress. Several studies have investigated acute oxidative stress conditions in keratinocyte skin cell culture models [2224]. In contrast to primary skin tissue, in vitro cultures obviously allow the investigation of cells with the same genetic background over long investigation times and under highly controlled conditions.

Following repeated redox challenge, we used transcriptome microarray technology to study the molecular mechanisms and to identify markers of cellular redox modulation in keratinocytes. Periodic redox stress was applied over 3 months and coincided with an altered gene expression linked to cell metabolism, inflammation, and general stress response. Our model system was designed to emphasize mild redox conditions rather than applying cytotoxic dosages. We were able to show distinct transcript profiles of cytokines, keratins, and growth factors as well as an imperative involvement of junctional proteins in redox adaptions. Collectively, the presented system-wide modifications suggest that the simultaneous alteration of multiple pathways provides an important in-depth transcriptome overview linking permanent plasma-evoked oxidative stress effects with cell responses and adaption mechanisms, conceivably having implications in redox-based diseases of the skin.

2. Material and Methods

2.1. Cell Culture and Cold Physical Plasma

Three million epithelial keratinocyte HaCaT cells [25] were cultured in 75 cm2 dishes using RPMI1640 cell culture medium supplemented with 8% bovine calf serum (Sigma, USA), 0.1 mg/mL penicillin/streptomycin, and 2 mM L-glutamine (Lonza, Switzerland). Cold physical plasma-treated cell culture medium was generated by exposure of 5 mL of fully supplemented medium to an atmospheric pressure argon plasma jet (60 s; kINPen 09; neoplas tools, Germany) [26]. Three standard liters per minute of argon (99.99%; Air Liquide, France) were used as feed gas. The plasma was generated by applying a voltage of 2–6  with a frequency of 1.0–1.1 MHz to the central electrode. Three million HaCaT keratinocytes were exposed to 15 mL of plasma-treated medium twice a week and passaged once a week (Figure 2(a)). After two, six, eight, ten, and twelve weeks, cells were either subjected to microscopic experiments or RNA or protein isolation.

2.2. Flow Cytometry

Keratinocytes were loaded with 5 μM of CM-H2DCF-DA or mitotracker deep red (MTDR; both life technologies, USA) according to the manufacturer’s instructions. After exposure to plasma-treated medium, cells were trypsinized and green fluorescence was quantified using a Gallios flow cytometer (Beckman-Coulter, USA). For assessment of apoptosis, keratinocytes were plasma-treated and incubated for 18 h at 37°C. Etoposide (50 μM) was used as positive control (BioVision, USA). Subsequently, cells were loaded with active caspase 3 detection reagent (Enzo, USA) according to the vendor’s protocol. Keratinocytes were then trypsinized and subjected to flow cytometric evaluation. Data analysis was conducted using Kaluza software (Beckman-Coulter).

2.3. Transcriptomic Analysis

RNA was purified according to the manufacturer’s instructions (Bio&Sell, Germany) and RNA quality was maximal (scores of 10 out of 10; data not shown) as evaluated using low-volume gel electrophoresis (Bioanalyzer 2010; Agilent, USA). For cRNA generation, RNA of two independent experiments was pooled for each sample. cRNA was conjugated to Cy3, and transcriptional analysis was carried out using microarray-based exon analysis (Agilent) as described before [27]. Briefly, samples were hybridized onto SurePrint G3 custom GE 8 × 60 K chips (OakLabs, Germany) for 17 h at 65°C in a hybridization oven (Agilent). After washing, fluorescence intensities were recorded using a gene chip scanner (Agilent). Background-corrected signal intensities were determined and processed using feature extraction software (Agilent). Normalization, statistical tests, clustering, and filtering methods were conducted using gene expression analysis software (Partek, USA). Microarray data were deposited into gene expression omnibus database (GSE4876). Data were grouped according to their respective treatment regime (2, 6, 8, 10, and 12 weeks) and analyzed statistically using multiple testing corrections to identify differentially expressed genes (at least ±2-fold with ). Also expression changes of less than ±2-fold are shown if target expression at one or more time points was greater than ±2-fold. Additionally, sets of coregulated genes were functionally clustered, and their biological relevance was analyzed using PANTHER software.

2.4. Protein Analysis

Instead of validating a large number of microarray results, we rather chose protein targets based on their significance within main cellular responses. These included oxidative defense (PRDX2 was among the 333 always differentially expressed genes (Figure 2(c)); HSP27 and its phosphorylated form were previously found to be central, studying the redox response in THP-1 monocytes [28]; NQO1 was also found to be redox-controlled using cold plasma [27]), cellular damage and apoptosis (histone H2AX and its phosphorylation are prominent markers of genomic DNA damage; Puma [29] and p21 [30] are involved in redox-related apoptosis induction), and cellular structure (keratin 1 showed the strongest regulation among all keratins (Table 2); β-actin served as housekeeping protein). For protein isolation, cells were lysed in RIPA buffer containing protease and phosphatase inhibitors (cOmplete Mini, phosSTOP; Roche, Germany) and 2 mM phenylmethanesulfonylfluoride (Roth, Germany). For western blotting, proteins of cell lysates were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis on precast 10% gels (AbCam, UK) and transferred to PVDF membranes (Roth). Immunoblots of whole protein extracts (20 μg) were performed with antibodies against Puma and E-cadherin (all Cell Signaling, USA); occludin and ZO-1 (both life technologies, USA); and CTNNB1, β-actin, Hsp27, phospho-Hsp27, PRDX2, H2AX, and phospho-H2AX (all Santa Cruz, USA). Antibody binding was followed by three washing steps and incubation with horseradish peroxidase-coupled secondary antibodies before chemiluminescence (Light Polaris; Serva, Germany) detection (ImageQuant; GE Healthcare, USA). Band intensities were quantified using ImageQuantTL Software (GE Healthcare), normalized to total protein level, and expressed as fold change compared to the corresponding control.

2.5. Cell Migration and Immunofluorescence Microscopy

One million HaCaT keratinocytes were seeded onto 60 mm plastic culture dishes and incubated overnight to permit cell adhesion. Scratches were performed using a 10 μL pipette tip. Gap closure was followed by time lapse microscopy (Zeiss, Germany) and three gap distances per samples were evaluated at different time points using Axio Vision software (Zeiss). For immunofluorescence, HaCaT keratinocytes were grown on glass coverslips for 24 h prior to fixation (4% paraformaldehyde; Sigma) and permeabilization (PBS with 0.1% Triton X-100; Sigma). Samples were subsequently incubated with primary antibodies (1 : 500; cell signaling technologies, USA) targeted at zona occludens protein 1 (ZO-1) overnight at 4°C. Cells were washed twice and incubated with appropriate Alexa Fluor 488-conjugated secondary antibodies (1 : 700; life technologies) for 1 h. Coverslips were washed and mounted onto glass microscope slides using mounting medium containing DAPI (VectaShield; Biozol, Germany) prior to analysis using an Axio Observer Z.1 (Zeiss).

3. Results

3.1. Cold Plasma Induced Redox Changes but Only Modestly Impacted Cell Viability

Plasma generates reactive species of various kinds and we found a fluorescence increase of intracellular DCF indicative of redox stress (Figures 1(a) and 1(b)). Then, we investigated cell viability after single application of plasma-treated medium. In contrast to positive control (etoposide), we identified an only subtle, nonsignificant increase in apoptotic cells receiving plasma-treated medium (Figures 1(c) and 1(d)). Thus, the plasma treatment time (60 s) was mediating a rather nontoxic oxidative challenge to keratinocyte cells.

3.2. HaCaT Keratinocyte Gene Expression Was Affected by Periodic Redox Challenge

Next, we repeatedly exposed HaCaT keratinocytes to cold physical plasma-treated (60 s) cell culture medium over three months to assess its impact on global gene expression (Figure 2(a)). Hierarchical clustering illustrated the statistically relevant changes in gene expression between oxidatively challenged compared to untreated cells (Figure 2(b)). We detected a total of approximately 3,000 genes with at least ≥2-fold increase or decrease of expression. Venn diagrams were constructed to identify the number of exclusively up- or downregulated genes corresponding to the different sampling time points. Overlapping differences shared among more than one sample group comparison are represented in the areas of intersection between two or more circles. The Venn diagram showed the overlapping genes among the 2,068, 2634, 1602, 1319, and 1052 transcripts differentially expressed between the w2 and w12 groups (Figure 2(c)). The 333 transcripts in the center of the Venn diagram represent genes that are differently expressed among all treatment groups (in contrast to control). A total of 123 genes with ID classification (from these 333 transcripts) were identified using PANTHER software (Supplemental Table A) (see Supplementary Material available online at http://dx.doi.org/10.1155/2016/9816072) and were further subdivided into several functional and protein classes (Supplemental Table B). In total, 411, 1079, 709, 453, and 321 transcripts were upregulated, and 496, 1241, 850, 527, and 391 transcripts were downregulated in our different groups from w2 to w12 and in comparison to untreated keratinocytes, respectively. In comparison to w8–12, the number of differentially expressed genes was higher at the relatively earlier time points (w2 and w6) (Figure 2(d)). The differentially expressed genes with a known function were assigned to gene ontology (GO) and protein classes (Figure 3). Significant GO terms (; PANTHER database) were “immune system” (324 genes) and “response to stimulus” (457 genes) (Figures 3(a) and 3(b)). Within the latter, a large number of genes were involved in “stress responses” (134 genes) and “immunological processes” (128 genes). Further, there were a number of genes related to signaling (Figure 3(c)), such as protein kinases, phosphatases, growth factors, cytokines, and chemokines. We also identified a large set of genes belonging to oxidoreductases (Figure 3(d)). Taken together, the transcriptomic investigation revealed a number of modulations following cyclic oxidative stress.

3.3. The Antioxidative Defense System Was Activated by Frequent Redox Stress

We extended our transcriptomic view to enzymes involved in resolving redox stress (Figure 4). Stress signaling on downstream factors, such as heme oxygenases (HMOX) and NADPH quinone oxidoreductase 1 (NQO1), was at least in part significantly increased (Figure 4(a)). Initial (week 2) superoxide dismutases 1 and 3 (SOD1/3) expression was unaffected whereas their expression reached a maximum at week 6 of periodic oxidative challenge (Figure 4(b)). Expression of catalase was moderately but significantly increased after ten weeks of frequent plasma exposure. Glutathione peroxidases (GPX1, GPX5, and GPX8) showed an overall modest upregulation while GPX3 was found to be constantly downregulated (Figure 4(c)). Peroxiredoxin (PRDX) 1, 2, 4, and 6 expressions were rather enhanced, especially after week 6. A significant increase of expression of members of the antioxidative defense system was most prominent after 6 weeks of frequent exposure to plasma-treated medium (Figure 4(d)), indicating strong adaption responses of keratinocytes.

3.4. Apoptosis Pathways

Only a small number of genes involved in apoptotic signaling were found in our transcriptomic studies with 31 genes being positive and 17 genes being negative regulators of apoptosis (Figure 5(a)). BCL2 and BBC3 (both p53-upregulated inducers of apoptosis) transcript levels were only nonsignificantly increased throughout the three months of treatments. Similarly, downregulation of the cell cycle gate-keeper CDKN1A (p21) was steady but modest (Figure 5(b)) while upregulation of the DNA repair enzyme GADD45 was significant at w2 and w6. Heat shock proteins protect cells from excessive protein stress and subsequently from apoptosis, and we found several candidates (HSP90A, HSP90AB, and HSP90B) to be significantly upregulated at w2 and/or w6 (Figure 5(c)). In contrast, actin mRNA and protein expression remained relatively unchanged (data not shown). Therefore, β-actin was used as loading control in western blot analysis (Figure 6(a)(I)). Correlating to transcriptomics, western blot analysis of the antioxidative enzymes NQO1 and PRDX2 confirmed a slight or significant upregulation, respectively (Figures 6(a)(II) and 6(a)(III)). Contrasting data on mRNA expression, a strong upregulation was seen for Puma (BBC3) and p21 (CDKN1A). Their protein level remained significantly elevated at weeks 8 to 10 of cyclic oxidative challenges with p21 but not Puma decreasing after that (Figures 6(b)(I) and 6(b)(II)). For H2AX, we found a twofold repression of its total protein (Figure 6(c)(I)) amount whereas its phosphorylated form (γ-H2AX) and the ratio between phosphorylated und total protein were increased (Figures 6(c)(II) and 6(c)(III)), indicating cellular perception of redox stress. Moreover, we detected a significant increase of the cytoprotective HSP27 total protein as well as its phosphorylated form throughout this study from w2 to w12 (Figures 6(d)(I) and 6(d)(II)). The p-HSP27/HSP27 ratios negatively correlated to number of passages periodically receiving oxidative challenge (Figure 6(d)(III)).

3.5. Gene Expression of Structural Proteins Was Strongly Affected with Frequent Redox Stress

Structural proteins serve as important barriers and mediate cell-cell contact. We were able to identify a differential expression of occludin (OCLN), several claudins (CLDN 1–4, 7, 8, 12, 17–19, 22, and 23), and zonula occludens (ZO) tight junction proteins (ZO-1, ZO-2, and ZO-3) (Table 1). Interestingly, ZO-1 protein was only upregulated after initial redox challenges up to 6 weeks. CDHs are linked to actin via β-catenin (CTNNB; cadherin-associated protein), and mRNA expression of the latter was also enhanced following repeated exposure to redox stress. We also discovered transcriptional changes in a striking number of keratins (KRT) and their associated proteins (KRTAP) as well as matrix-metalloproteinases (MMPs) and other structural proteins (Table 2). A significant decline was seen with KRT1, KRT4, KRT13, and KRT77 while others were strongly upregulated (e.g., KRT35, KRT38, KRT72, KRT82, and KRT83) after redox stress. KRT1 is a major epithelial keratin and western blotting confirmed its significantly lower expression after periodic oxidative challenge (Figure 6(b)(III)). The MMPs investigated seemed to be always upregulated in oxidative stress conditions. While acute stress only modulated few targets investigated (20/66 in w2), chronic stress affected a larger number of transcripts (47/66 in w6) with declining numbers after that (32/66 in w8; 31/66 in w10; 21/66 in w12).


Gene nameGene IDw2w6w8w10w12

OccludinOCLN1.32−1.15−2.11−2.02−1.86

Claudin 1CLDN1−1.11−2.32−1.38−1.011.04
Claudin 2CLDN22.172.111.401.48−1.26
Claudin 3CLDN31.971.68−4.12−2.41−1.27
Claudin 4CLDN41.663.19−1.021.001.08
Claudin 6CLDN61.592.52−1.161.37−1.99
Claudin 7CLDN71.07−1.38−2.03−1.56−1.08
Claudin 8CLDN81.05−10.46−1.86−1.311.06
Claudin 12CLDN121.422.211.671.781.28
Claudin 17CLDN171.86−1.70−1.93−2.66−2.61
Claudin 18CLDN184.86−1.11−1.27−1.74−1.81
Claudin 19CLDN191.86−2.46−2.41−1.041.38
Claudin 22CLDN2217.472.93−1.661.26−1.52
Claudin 23CLDN23−1.24−1.68−3.49−2.51−1.69

Zonula occludens protein 1TJP1 (ZO-1)1.683.061.14−1.091.10
Zonula occludens protein 2TJP2 (ZO-2)−1.05−2.27−2.26−1.53−1.07
Zonula occludens protein 3TJP3 (ZO-3)−1.62−2.60−1.45−1.08−1.39

Cadherin 2CDH24.7846.4911.741.566.26
Cadherin 3CDH31.372.101.701.261.25
Cadherin 4CDH41.663.19−1.021.001.08
Cadherin 5CDH51.362.06−1.061.781.15
Cadherin 7CDH71.851.971.322.292.27
Cadherin 9CDH92.53−3.54−3.35−2.47−2.51
Cadherin 10CDH102.141.321.311.631.20
Cadherin 13CDH13−1.192.953.403.34−1.09
Cadherin 16CDH163.55−1.47−1.42−1.821.11
Cadherin 18CDH182.04−1.142.481.18−1.02
Cadherin 19CDH192.32−1.35−1.34−1.35−1.31
Cadherin 20CDH205.801.762.351.67−1.14
Cadherin 23CDH233.071.022.481.471.90
Cadherin 24CDH241.532.831.611.251.06

α-actin 2ACTA21.10−1.212.701.411.06
β-actinACTB1.341.351.231.041.02
β-catenin 1CTNNB11.622.051.271.031.21


Gene nameGene IDw2w6w8w10w12

MatrilysinMMP753.363.493.412.652.34
Matrix metallopeptidase 27MMP273.004.163.812.743.16
Stromelysin 2MMP102.08124.312.812.102.27

Keratin I cytoskeletal 13KRT13−1.22−5.77−1.46−1.35−1.03
Keratin I cuticular Ha5KRT351.4312.001.711.611.20
Keratin I cuticular Ha8KRT3812.153.2411.822.671.25
Keratin II cytoskeletal 1KRT1−1.21−87.56−2.72−1.571.13
Keratin II cytoskeletal 1bKRT77−1.78−41.78−4.12−2.51−1.65
Keratin II cytoskeletal 4KRT41.20−3.27−1.20−1.15−1.03
Keratin II cytoskeletal 8KRT81.463.421.681.261.28
Keratin II cytoskeletal 72KRT725.703.193.042.233.78
Keratin II cytoskeletal 79KRT79−1.08−1.87−1.636.24−1.56
Keratin II cuticular Hb2KRT821.352.862.741.943.03
Keratin II cuticular Hb3KRT831.792.771.18−1.241.28
Keratin-associated 3-3KRTAP3-35.601.422.041.48−1.01
Keratin-associated 4-1KRTAP4-1−1.18−1.125.29−1.111.21
Keratin-associated 4-2KRTAP4-2−1.10−2.061.7611.54−2.28
Keratin-associated 10-7KRTAP10-7−1.763.762.813.083.84
Keratin-associated 10-10KRTAP10-10−1.11−2.033.13−1.62−1.13
Keratin-associated 10-11KRTAP10-115.663.17−1.40−1.421.72
Keratin-associated 10-12KRTAP10-12−1.278.014.782.681.25
Keratin-associated 13-3KRTAP13-31.1935.43−1.23−1.261.54
Keratin-associated 16-1KRTAP16-1−1.22−1.30−1.2025.271.49
Keratin-associated 22-2KRTAP22-2−1.295.20−1.54−1.541.89

FilaggrinFLG−14.01.05−1.23−3.29−1.41
Laminin subunit alpha-1LAMA12.052.091.791.311.19
Late CE protein 1ALCE1A1.717.893.032.051.65
LoricrinLOR−1.68−6.88−2.35−3.90−1.18
Protein S100-A4S100A4−1.44−4.27−2.75−1.14−1.17
Protein S100-A6S100A6−1.06−3.53−1.65−1.53−1.25
Protein S100-A7S100A71.23−4.63−4.541.281.51
Protein S100-A8S100A81.02−8.31−3.311.211.17
Protein S100-12S100A12−1.39−4.62−2.421.281.28

3.6. Redox Stress Reduced HaCaT Keratinocyte Motility and Induced Morphological Changes

Scratch assay was performed to determine keratinocyte motility using time lapse video microscopy (Figure 7(a)). Repeated plasma treatment significantly repressed keratinocyte motility following oxidative stress (Figure 7(b)). Interestingly, repression peaked at w2 but was partially reversed after further redox challenges (w6 and w8). Visually, periodic exposure to oxidative stress apparently enlarged cell size as shown using immunofluorescence staining with ZO-1 (Figure 7(c)). Cell size enhancement may be linked to a higher number of mitochondria. We therefore assessed the total mitochondrial content. Mitotracker fluorescence was measured in periodically plasma-treated cells and compared with untreated keratinocytes. Using flow cytometry, a moderate but significant increase in mitochondrial content in stressed cells supported the notion of enlarged cell bodies after oxidative stress challenge (Figure 7(d)).

3.7. Plasma-Treated Medium Elicited a Distinct Secretory and Inflammatory Profile

Secretory products, such as cytokines, growth factors, and other inflammatory mediators, serve to mediate autocrine and paracrine communication between cells. An overview of the altered cytokine expression is given (Table 3). Cold plasma induced not only proinflammatory (e.g., IL-4, IL-10, and TGFβ) but also anti-inflammatory (e.g., IL-6, IL-8, and TNFα) cytokines. Moreover and in response to plasma-mediated oxidative stress, HaCaT keratinocytes contained significantly increased levels of several growth factor transcripts (e.g., CSF2, GAS1, FGF6, and IGFs).


Gene nameGene IDw2w6w8w10w12

Interleukin-1αIL1A11.8517.094.011.363.18
Interleukin-1βIL1B4.305.652.30−1.012.14
Interleukin-4IL45.72−1.341.05−1.33−1.77
Interleukin-5IL55.51−1.06−2.05−2.34−1.92
Interleukin-6IL63.383.951.281.823.48
Interleukin-8IL82.252.831.28−1.84−1.25
Interleukin-9IL-9 −1.39−1.122.85−1.06−1.26
Interleukin-10IL103.811.682.081.361.15
Interleukin-11IL-111.02−2.34−1.50−1.39−1.80
Pro-interleukin-16IL163.02−1.45−1.421.981.79
Interleukin-17AIL-17A1.742.741.352.561.39
Interleukin-17BIL17B13.903.202.942.077.54
Interleukin-17DIL17D2.9111.473.16−1.411.55
Interleukin-18BPIL-18BP−2.241.121.411.46−1.74
Interleukin-17FIL17F−1.4611.22−1.55−1.09−1.13
Interleukin-19IL192.092.511.032.05−1.32
Interleukin-24IL241.163.533.132.212.27
Interleukin-31IL311.8516.1513.1813.641.49
Interleukin-32IL322.251.82−1.071.591.29
Interleukin-33IL332.872.231.191.30−1.70
Interleukin-34IL342.012.46−1.072.39−1.20
Interleukin-36αIL36A4.381.70−1.231.13−1.01
Interleukin-36βIL36B6.592.312.331.259.74
Interleukin-37IL371.173.111.36−1.061.13

Colony stimulating factor 2CSF21.696.912.541.711.67
Fibroblast growth factor 2FGF2−3.022.57−1.241.801.36
Fibroblast growth factor 5FGF58.95−1.22−1.161.039.55
Fibroblast growth factor 6FGF61.581.207.191.453.01
Fibroblast growth factor 9FGF9−1.343.59−1.511.772.68
Fibroblast growth factor 14FGF141.13−1.081.08−1.063.10
Fibroblast growth factor 18FGF18−1.2413.761.68−1.09−1.86
Fibroblast growth factor 21FGF211.74−1.40−1.306.291.47
Fibroblast growth factor 22FGF223.023.03−1.33−1.371.47
Growth arrest-specific protein 1GAS13.562.331.971.862.36
Growth arrest-specific protein 2GAS2−1.22−1.14−1.038.871.32
Growth/differentiation factor 11GDF11−1.043.041.681.211.04
Insulin-like growth factor IIGF17.102.702.351.881.14
Insulin-like growth factor IIIGF22.457.87−3.18−3.43−1.21
TGFβTGFB11.612.801.71−1.35−1.06
TNFαTNFA1.977.571.671.572.10

4. Discussion

We investigated the HaCaT keratinocyte global transcriptomic profile over three months to identify genes reflecting adaptions to periodic oxidative stress as seen in redox-related diseases of the skin. The frequent redox challenge was applied using cold physical plasma-treated medium as in previous proteomics studies [31]. Its use is advantageous over addition of single oxidants as it provides a complex mixture of reactive components that either originate directly from the plasma gas phase or are formed during secondary reactions with ambient air or water molecules [32]. This includes the deposition of biologically active reactive molecules, such as superoxide, hydroxyl radicals, nitrite, nitrate, peroxynitrite, and hydrogen peroxide [3335]. Accordingly, and in line with previous results using other cell types [3638], plasma-treated medium led to intracellular oxidation (Figure 1). It is important to consider the dual role exhibited by ROS and RNS [39]. While cytotoxic effects occur at high doses [40], low-dose redox stimulation is imperative in cell physiology [41]. Activation of kinases and inhibition of phosphatases are critically regulated by reactive species [42]. Reactive species also play a crucial role in wound healing [43]. In particular hydrogen peroxide is an important second messenger for HaCaT keratinocyte cell growth [44]. Cellular RNS are mainly produced secondary to signaling events initiated upon ROS [45]. We here present a group of interesting targets in response to repetitive redox stress.

Insufficient removal of reactive intermediates leads to intracellular accumulation of ROS and results in oxidative stress [4648]. This may result in induction of apoptosis and p53 activation through phosphorylation of MAP kinases and activation of Bcl-2 family proteins [4951]. Within the transcriptome, our continuous plasma treatment targeted apoptotic processes in HaCaT cells only to a minor extent. By contrast, Puma and p21 protein were upregulated from w6 to w12, indicating a differential apoptotic programming with long-term redox challenges [52, 53]. GADD45 modifies DNA-accessibility if damage is anticipated and its upregulation was only transient (w2 to w6) suggesting that adaptive mechanisms take place with frequent redox challenges. The ROS/RNS-associated, antiapoptotic heat shock proteins are mediators between p53 and mitogen-activated protein (MAP) kinase signaling [54]. The cell stress chaperone HSP90, which is essential for protein folding and transports within the cell [55], and both total HSP27 protein and its phosphorylated form, which function in signal transduction and inhibition of apoptosis [56], were significantly upregulated during frequent oxidative challenge. Both molecules are promising clinical targets to reduce oxidative stress [57, 58]. H2AX facilitates recruitment of DNA repair proteins [59] and becomes phosphorylated (γ-H2AX) as a downstream effect of the apoptosis cascade and in response to DNA replication stress in a ATR-dependent manner [60]. The increased presence of γ-H2AX suggests that genomic stress was perceived throughout the 3 months of treatment. We could not find a significant modulation of ATR expression (data not shown) which corroborates the results of a previous study investigating the transcriptome in cold plasma-treated corneas [61].

Oxidative or nitrosative stress is usually counteracted by enzymatic scavengers while silencing of antioxidative defense enzymes enhances cellular damage and cancer formation [62]. We found an upregulation of several peroxiredoxins and glutathione peroxidases except for GPX3 (Figure 4). GPX1, GPX5, and GPX8 prevent peroxide-induced oxidative damage, lipid peroxidation, and protein degradation [6365]. They were upregulated rather at the beginning of chronic oxidative challenge (w6) suggesting an adaption of keratinocytes within the antioxidative defense system during the later course of culture. The upregulation of PRDX2, another important antioxidative enzyme, has also been found in psoriasis [66]. The downmodulation of GPX3, the only extracellular member of the glutathione peroxide family [67], may have been compensated by the concomitant upregulation of the other antioxidative enzymes. The overall upregulation of the antioxidative system corroborates our recent results involving a redox-based activation of the Nrf2 pathway controlling HMOX1 expression [27]. Our results also correlate well with previous studies that identified a subtle decrease of HMOX1 but not HMOX2 [68] following redox stress.

Keratinocytes appear to play an important role in differentiation, migration, and reepithelialization in the final stage of wound closure [69]. For acute redox stress, plasma-treated medium notably repressed cell migration which is in agreement with our previous results using a carcinoma cell line [70]. Interestingly, cell migration activity partly recovered afterwards, pointing to an adaption of keratinocytes to periodic redox challenges. Proliferation is tightly linked to cell-cell contacts and adhesion molecules, such as tight junctions [7173]. Downregulation of junctional proteins (e.g., occludins and claudins) is often associated with impairment of barrier function and disease [7476]. Several of such transcripts were modulated by repetitive redox challenges, possibly indicating a reorganization of the junctional network in response to ROS as also suggested by others [7779]. Keratins also contribute to the barrier properties [80] and are associated with regulatory functions [81], forming a signaling network with kinases [82]. A large number of keratin transcripts were differentially expressed following repeated exposure to oxidative mediators, possibly being responsible for the observed differences in cellular migration. Moreover, they may be linked to the observed increase in cell size. This corroborates our previous findings in plasma-treated THP-1 cells [83] and links to ROS-mediated increase in keratinocyte cell size and differentiation [84]. In support of this notion, LCE1A, which is expressed in late stages of keratinocyte maturation [85], was significantly upregulated. Filaggrin (FLG), another important component of protective skin layers of the epidermis was downregulated. A loss of FLG function is associated with several skin diseases such as ichthyosis vulgaris [86] and atopic dermatitis [87]. Both LCE1A and FLG belong to the cornified envelope which was recently shown to be highly involved in redox regulation via ROS quenching [88].

We identified a number of secretory factor transcripts being regulated via frequent redox stress. The extracellular matrix is important for keratinocyte migration in wound healing but also prone to MMP digestion [89]. As such, MMPs participate in physiological (e.g., angiogenesis and wounds healing) and pathological (e.g., cancer and nonhealing wounds) processes [9092]. MMP2 (collagenase IV) and MMP16 (activates MMP2) expression was significantly upregulated at all time points, suggesting a detrimental role in wound healing processes [93]. Moreover, we found a differential regulation of transcripts associated with inflammatory processes in the skin (e.g., S100A) [94], which are associated with an altered cellular phenotype, and enhanced expression of inflammatory mediators, for example, cytokines [95]. Such immune mediators are often dysregulated in chronic wounds [96]. IL-19 transcript numbers were increased in response to periodic redox stress and were previously reported to upregulate the expression of proinflammatory IL-6 and TNFα which together with IL-1 and IL-8 were also found to be upregulated in our study [97]. These mediators were shown to be elevated in nonhealing wounds [98101]. Also highly proinflammatory neutrophils are chemotactic for CSF2 [102], and in line with previous studies [103] CSF2 was found to be constantly elevated in response to redox stress. However, periodic redox stress also increased the transcription of anti-inflammatory mediators. IL-37 is a fundamental inhibitor of innate immunity [104] and keratinocyte-derived IL-4 and IL-10 mediate immune suppression [105]. TGFβ has been used in clinical trials combating deficient wound healing [106] and was partially increased following plasma as well. Frequent redox challenges thus generated not only a pro- but also anti-inflammatory cytokine signature and thus may have a complex impact on the quality of inflammation in redox-related diseases.

We can only speculate why there was no consistent up- and downregulation patterns over time in the targets investigated in this study. First, gene expression may be heterogeneous within cultured cells. Frequent cold plasma treatment may have promoted growth of cells that are better equipped against oxidative stress, consequently overgrowing the cells that are not. For example, single cold plasma treatment of keratinocytes led to G2/M-phase cell cycle arrest but this was dependent on the total treatment time and was not present in all cells [107]. Alternatively, all keratinocyte cells may have adapted to redox stress over time, significantly altering their basal gene expression profile.

5. Conclusion

Using cold physical plasma-derived reactive species, our keratinocyte-based in vitro model aimed to mimic the characteristics of chronic oxidative stress in redox-related disorders of the skin to pinpoint biomarkers for molecular therapies. Redox processes are important decision makers in skin disease and tumorigenesis and here affected cell-cell communication, cellular proliferation, and inflammatory processes. The identification of genes and proteins whose expression is altered following permanent oxidative challenge is an important step to better understand redox regulations in clinical settings.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was funded by the Ministry of Education, Science and Culture of the State of Mecklenburg-Western Pomerania and European Union, European Social Fund under Grant number AU 11 038; ESF/IV-BM-B35-0010/13.

Supplementary Materials

Supplementary Table: Differentially expressed genes present in all groups investigated (A)and their classification into protein functions and classes (B).

  1. Supplementary Table

References

  1. D. R. Bickers and M. Athar, “Oxidative stress in the pathogenesis of skin disease,” Journal of Investigative Dermatology, vol. 126, no. 12, pp. 2565–2575, 2006. View at: Publisher Site | Google Scholar
  2. F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001. View at: Publisher Site | Google Scholar
  3. C. S. Sander, F. Hamm, P. Elsner, and J. J. Thiele, “Oxidative stress in malignant melanoma and non-melanoma skin cancer,” British Journal of Dermatology, vol. 148, no. 5, pp. 913–922, 2003. View at: Publisher Site | Google Scholar
  4. T. J. James, M. A. Hughes, G. W. Cherry, and R. P. Taylor, “Evidence of oxidative stress in chronic venous ulcers,” Wound Repair and Regeneration, vol. 11, no. 3, pp. 172–176, 2003. View at: Publisher Site | Google Scholar
  5. Q. Zhou, U. Mrowietz, and M. Rostami-Yazdi, “Oxidative stress in the pathogenesis of psoriasis,” Free Radical Biology and Medicine, vol. 47, no. 7, pp. 891–905, 2009. View at: Publisher Site | Google Scholar
  6. J. Ferlay, E. Steliarova-Foucher, J. Lortet-Tieulent et al., “Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012,” European Journal of Cancer, vol. 49, no. 6, pp. 1374–1403, 2013. View at: Publisher Site | Google Scholar
  7. N. Graves and H. Zheng, “The prevalence and incidence of chronic wounds: a literature review,” Wound Practice and Research, vol. 22, no. 1, pp. 14–19, 2014. View at: Google Scholar
  8. C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair and Regeneration, vol. 17, no. 1, pp. 1–18, 2009. View at: Publisher Site | Google Scholar
  9. R. Parisi, D. P. M. Symmons, C. E. M. Griffiths, and D. M. Ashcroft, “Global epidemiology of psoriasis: a systematic review of incidence and prevalence,” Journal of Investigative Dermatology, vol. 133, no. 2, pp. 377–385, 2013. View at: Publisher Site | Google Scholar
  10. D. Darr and I. Fridovich, “Free radicals in cutaneous biology,” Journal of Investigative Dermatology, vol. 102, no. 5, pp. 671–675, 1994. View at: Publisher Site | Google Scholar
  11. C. Lehner, R. Gehwolf, H. Tempfer et al., “Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases,” Antioxidants and Redox Signaling, vol. 15, no. 5, pp. 1305–1323, 2011. View at: Publisher Site | Google Scholar
  12. K. R. Martin and J. C. Barrett, “Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity,” Human and Experimental Toxicology, vol. 21, no. 2, pp. 71–75, 2002. View at: Publisher Site | Google Scholar
  13. R. Kohen and A. Nyska, “Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification,” Toxicologic Pathology, vol. 30, no. 6, pp. 620–650, 2002. View at: Publisher Site | Google Scholar
  14. E. H. Sarsour, M. G. Kumar, L. Chaudhuri, A. L. Kalen, and P. C. Goswami, “Redox control of the cell cycle in health and disease,” Antioxidants and Redox Signaling, vol. 11, no. 12, pp. 2985–3011, 2009. View at: Publisher Site | Google Scholar
  15. S. J. Green, L. F. Scheller, M. A. Marletta et al., “Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens,” Immunology Letters, vol. 43, no. 1-2, pp. 87–94, 1994. View at: Publisher Site | Google Scholar
  16. M.-M. Cals-Grierson and A. D. Ormerod, “Nitric oxide function in the skin,” Nitric Oxide, vol. 10, no. 4, pp. 179–193, 2004. View at: Publisher Site | Google Scholar
  17. J. J. P. Gille, P. Pasman, C. G. M. van Berkel, and H. Joenje, “Effect of antioxidants on hyperoxia-induced chromosomal breakage in Chinese hamster ovary cells: protection by carnosine,” Mutagenesis, vol. 6, no. 4, pp. 313–318, 1991. View at: Publisher Site | Google Scholar
  18. A. T. Black, J. P. Gray, M. P. Shakarjian, D. L. Laskin, D. E. Heck, and J. D. Laskin, “Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat,” Toxicology and Applied Pharmacology, vol. 231, no. 3, pp. 384–392, 2008. View at: Publisher Site | Google Scholar
  19. F. Brehmer, H. A. Haenssle, G. Daeschlein et al., “Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622),” Journal of the European Academy of Dermatology and Venereology, vol. 29, no. 1, pp. 148–155, 2015. View at: Publisher Site | Google Scholar
  20. M. Klebes, J. Lademann, S. Philipp et al., “Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: a pilot study,” Clinical Plasma Medicine, vol. 2, no. 1, pp. 22–27, 2014. View at: Publisher Site | Google Scholar
  21. H. R. Metelmann, T. von Woedtke, R. Bussiahn et al., “Experimental recovery of CO2-laser skin lesions by plasma stimulation,” American Journal of Cosmetic Surgery, vol. 29, pp. 52–56, 2012. View at: Publisher Site | Google Scholar
  22. S. K. Mantena and S. K. Katiyar, “Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-κB signaling in human epidermal keratinocytes,” Free Radical Biology and Medicine, vol. 40, no. 9, pp. 1603–1614, 2006. View at: Publisher Site | Google Scholar
  23. N. Kanda and S. Watanabe, “17β-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression,” Journal of Investigative Dermatology, vol. 121, no. 6, pp. 1500–1509, 2003. View at: Publisher Site | Google Scholar
  24. A. A. Shvedova, C. Kommineni, B. A. Jeffries et al., “Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes,” Journal of Investigative Dermatology, vol. 114, no. 2, pp. 354–364, 2000. View at: Publisher Site | Google Scholar
  25. P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig, “Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line,” The Journal of Cell Biology, vol. 106, no. 3, pp. 761–771, 1988. View at: Publisher Site | Google Scholar
  26. K.-D. Weltmann, E. Kindel, R. Brandenburg et al., “Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation,” Contributions to Plasma Physics, vol. 49, no. 9, pp. 631–640, 2009. View at: Publisher Site | Google Scholar
  27. A. Schmidt, S. Dietrich, A. Steuer et al., “Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways,” The Journal of Biological Chemistry, vol. 290, no. 11, pp. 6731–6750, 2015. View at: Publisher Site | Google Scholar
  28. L. Bundscherer, K. Wende, K. Ottmüller et al., “Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines,” Immunobiology, vol. 218, no. 10, pp. 1248–1255, 2013. View at: Publisher Site | Google Scholar
  29. A. Maillet and S. Pervaiz, “Redox regulation of p53, redox effectors regulated by p53: a subtle balance,” Antioxidants & Redox Signaling, vol. 16, no. 11, pp. 1285–1294, 2012. View at: Publisher Site | Google Scholar
  30. A. Matsuzawa and H. Ichijo, “Stress-responsive protein kinases in redox-regulated apoptosis signaling,” Antioxidants and Redox Signaling, vol. 7, no. 3-4, pp. 472–481, 2005. View at: Publisher Site | Google Scholar
  31. K. Wende, A. Barton, S. Bekeschus et al., “Proteomic tools to characterize non-thermal plasma effects in eukaryotic cells,” Plasma Medicine, vol. 3, no. 1-2, pp. 81–95, 2013. View at: Publisher Site | Google Scholar
  32. A. Schmidt-Bleker, J. Winter, S. Iseni, M. Dünnbier, K.-D. Weltmann, and S. Reuter, “Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling,” Journal of Physics D: Applied Physics, vol. 47, no. 14, Article ID 145201, 2014. View at: Publisher Site | Google Scholar
  33. H. Tresp, M. U. Hammer, K.-D. Weltmann, and S. Reuter, “Effects of atmosphere composition and liquid type on plasma-generated reactive species in biologically relevant solutions,” Plasma Medicine, vol. 3, no. 1-2, pp. 45–55, 2013. View at: Publisher Site | Google Scholar
  34. H. Tresp, M. U. Hammer, J. Winter, K.-D. Weltmann, and S. Reuter, “Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy,” Journal of Physics D: Applied Physics, vol. 46, no. 43, Article ID 435401, 2013. View at: Publisher Site | Google Scholar
  35. S. Bekeschus, S. Iseni, S. Reuter, K. Masur, and K.-D. Weltmann, “Nitrogen shielding of an argon plasma jet and its effects on human immune cells,” IEEE Transactions on Plasma Science, vol. 43, pp. 776–781, 2015. View at: Publisher Site | Google Scholar
  36. S. Bekeschus, J. Kolata, A. Müller et al., “Differential viability of eight human blood mononuclear cell subpopulations after plasma treatment,” Plasma Medicine, vol. 3, no. 1-2, pp. 1–13, 2013. View at: Publisher Site | Google Scholar
  37. X. Yan, Z. Xiong, F. Zou et al., “Plasma-induced death of HepG2 cancer cells: intracellular effects of reactive species,” Plasma Processes and Polymers, vol. 9, no. 1, pp. 59–66, 2012. View at: Publisher Site | Google Scholar
  38. M. Yokoyama, K. Johkura, and T. Sato, “Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow,” Biochemical and Biophysical Research Communications, vol. 450, no. 4, pp. 1266–1271, 2014. View at: Publisher Site | Google Scholar
  39. L. A. Pham-Huy, H. He, and C. Pham-Huy, “Free radicals, antioxidants in disease and health,” International Journal of Biomedical Science, vol. 4, no. 2, pp. 89–96, 2008. View at: Google Scholar
  40. L. Bundscherer, S. Bekeschus, H. Tresp et al., “Viability of human blood leukocytes compared with their respective cell lines after plasma treatment,” Plasma Medicine, vol. 3, no. 1-2, pp. 71–80, 2013. View at: Publisher Site | Google Scholar
  41. B. D'Autréaux and M. B. Toledano, “ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 813–824, 2007. View at: Publisher Site | Google Scholar
  42. T.-C. Meng, T. Fukada, and N. K. Tonks, “Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo,” Molecular Cell, vol. 9, no. 2, pp. 387–399, 2002. View at: Publisher Site | Google Scholar
  43. C. K. Sen and S. Roy, “Redox signals in wound healing,” Biochimica et Biophysica Acta—General Subjects, vol. 1780, no. 11, pp. 1348–1361, 2008. View at: Publisher Site | Google Scholar
  44. A. E. K. Loo and B. Halliwell, “Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing,” Biochemical and Biophysical Research Communications, vol. 423, no. 2, pp. 253–258, 2012. View at: Publisher Site | Google Scholar
  45. R. B. Mikkelsen and P. Wardman, “Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms,” Oncogene, vol. 22, no. 37, pp. 5734–5754, 2003. View at: Publisher Site | Google Scholar
  46. H. J. Ahn, K. I. Kim, G. Kim, E. Moon, S. S. Yang, and J.-S. Lee, “Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals,” PLoS ONE, vol. 6, no. 11, Article ID e28154, 2011. View at: Publisher Site | Google Scholar
  47. S. Bekeschus, T. von Woedtke, A. Kramer, K.-D. Weltmann, and K. Masur, “Cold physical plasma treatment alters redox balance in human immune cells,” Plasma Medicine, vol. 3, no. 4, pp. 267–278, 2013. View at: Publisher Site | Google Scholar
  48. K. Priya Arjunan and A. Morss Clyne, “Hydroxyl radical and hydrogen peroxide are primarily responsible for dielectric barrier discharge plasma-induced angiogenesis,” Plasma Processes and Polymers, vol. 8, no. 12, pp. 1154–1164, 2011. View at: Publisher Site | Google Scholar
  49. J. A. Daniel, M. Pellegrini, B.-S. Lee et al., “Loss of ATM kinase activity leads to embryonic lethality in mice,” Journal of Cell Biology, vol. 198, no. 3, pp. 295–304, 2012. View at: Publisher Site | Google Scholar
  50. S. Ditch and T. T. Paull, “The ATM protein kinase and cellular redox signaling: beyond the DNA damage response,” Trends in Biochemical Sciences, vol. 37, no. 1, pp. 15–22, 2012. View at: Publisher Site | Google Scholar
  51. J. R. Jeffers, E. Parganas, Y. Lee et al., “Puma is an essential mediator of p53-dependent and -independent apoptotic pathways,” Cancer Cell, vol. 4, no. 4, pp. 321–328, 2003. View at: Publisher Site | Google Scholar
  52. M. Ott, V. Gogvadze, S. Orrenius, and B. Zhivotovsky, “Mitochondria, oxidative stress and cell death,” Apoptosis, vol. 12, no. 5, pp. 913–922, 2007. View at: Publisher Site | Google Scholar
  53. T. Finkel, “Oxidant signals and oxidative stress,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 247–254, 2003. View at: Publisher Site | Google Scholar
  54. L. Xu, S. Chen, and R. C. Bergan, “MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer,” Oncogene, vol. 25, no. 21, pp. 2987–2998, 2006. View at: Publisher Site | Google Scholar
  55. L. Whitesell and S. L. Lindquist, “HSP90 and the chaperoning of cancer,” Nature Reviews Cancer, vol. 5, no. 10, pp. 761–772, 2005. View at: Publisher Site | Google Scholar
  56. J. Huot, F. Houle, D. R. Spitz, and J. Landry, “HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress,” Cancer Research, vol. 56, no. 2, pp. 273–279, 1996. View at: Google Scholar
  57. S. Tukaj, D. Grüner, D. Zillikens, and M. Kasperkiewicz, “Hsp90 blockade modulates bullous pemphigoid IgG-induced IL-8 production by keratinocytes,” Cell Stress and Chaperones, vol. 19, no. 6, pp. 887–894, 2014. View at: Publisher Site | Google Scholar
  58. E. A. Voll, I. M. Ogden, J. M. Pavese et al., “Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression,” Oncotarget, vol. 5, no. 9, pp. 2648–2663, 2014. View at: Publisher Site | Google Scholar
  59. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139,” The Journal of Biological Chemistry, vol. 273, no. 10, pp. 5858–5868, 1998. View at: Publisher Site | Google Scholar
  60. I. M. Ward and J. J. Chen, “Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress,” The Journal of Biological Chemistry, vol. 276, no. 51, pp. 47759–47762, 2001. View at: Google Scholar
  61. U. Rosani, E. Tarricone, P. Venier et al., “Atmospheric-pressure cold plasma induces transcriptional changes in ex vivo human corneas,” PLoS ONE, vol. 10, no. 7, Article ID e0133173, 2015. View at: Publisher Site | Google Scholar
  62. B. Halliwell, “Oxidative stress and cancer: have we moved forward?” Biochemical Journal, vol. 401, no. 1, pp. 1–11, 2007. View at: Publisher Site | Google Scholar
  63. J. B. De Haan, P. J. Crack, N. Flentjar, R. C. Iannello, P. J. Hertzog, and I. Kola, “An imbalance in antioxidant defense aftfects cellular function: the pathophysiological consequences of a reduction in antioxidant defense in the glutathione peroxidase-1 (Gpx1) knockout mouse,” Redox Report, vol. 8, no. 2, pp. 69–79, 2003. View at: Publisher Site | Google Scholar
  64. R. J. Aitken, “Gpx5 protects the family jewels,” Journal of Clinical Investigation, vol. 119, no. 7, pp. 1849–1851, 2009. View at: Google Scholar
  65. T. Ramming, H. G. Hansen, K. Nagata, L. Ellgaard, and C. Appenzeller-Herzog, “GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum,” Free Radical Biology and Medicine, vol. 70, pp. 106–116, 2014. View at: Publisher Site | Google Scholar
  66. J. Ryu, S. G. Park, B. C. Park, M. Choe, K.-S. Lee, and J.-W. Cho, “Proteomic analysis of psoriatic skin tissue for identification of differentially expressed proteins: up-regulation of GSTP1, SFN and PRDX2 in psoriatic skin,” International Journal of Molecular Medicine, vol. 28, no. 5, pp. 785–792, 2011. View at: Publisher Site | Google Scholar
  67. Y. Dincer, Y. Erzin, S. Himmetoglu, K. N. Gunes, K. Bal, and T. Akcay, “Oxidative DNA damage and antioxidant activity in patients with inflammatory bowel disease,” Digestive Diseases and Sciences, vol. 52, no. 7, pp. 1636–1641, 2007. View at: Publisher Site | Google Scholar
  68. A. Pellacani, P. Wiesel, A. Sharma et al., “Induction of heme oxygenase-1 during endotoxemia is downregulated by transforming growth factor-β1,” Circulation Research, vol. 83, no. 4, pp. 396–403, 1998. View at: Publisher Site | Google Scholar
  69. T. Jacks and R. A. Weinberg, “Cell-cycle control and its watchman,” Nature, vol. 381, no. 6584, pp. 643–644, 1996. View at: Publisher Site | Google Scholar
  70. A. Schmidt, S. Bekeschus, T. von Woedtke, and S. Hasse, “Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment,” Clinical Plasma Medicine, vol. 3, no. 1, pp. 24–31, 2015. View at: Publisher Site | Google Scholar
  71. J. M. Brandner, S. Kief, C. Grund et al., “Organization and formation of the tight junction system in human epidermis and cultured keratinocytes,” European Journal of Cell Biology, vol. 81, no. 5, pp. 253–263, 2002. View at: Publisher Site | Google Scholar
  72. L. Langbein, C. Grund, C. Kuhn et al., “Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom,” European Journal of Cell Biology, vol. 81, no. 8, pp. 419–435, 2002. View at: Publisher Site | Google Scholar
  73. C. M. Nelson and C. S. Chen, “Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal,” FEBS Letters, vol. 514, no. 2-3, pp. 238–242, 2002. View at: Publisher Site | Google Scholar
  74. N. S. Harhaj and D. A. Antonetti, “Regulation of tight junctions and loss of barrier function in pathophysiology,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 7, pp. 1206–1237, 2004. View at: Publisher Site | Google Scholar
  75. S. Zeissig, N. Bürgel, D. Günzel et al., “Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease,” Gut, vol. 56, no. 1, pp. 61–72, 2007. View at: Publisher Site | Google Scholar
  76. M. P. Fink and R. L. Delude, “Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level,” Critical Care Clinics, vol. 21, no. 2, pp. 177–196, 2005. View at: Publisher Site | Google Scholar
  77. C. Coisne and B. Engelhardt, “Tight junctions in brain barriers during central nervous system inflammation,” Antioxidants and Redox Signaling, vol. 15, no. 5, pp. 1285–1303, 2011. View at: Publisher Site | Google Scholar
  78. K. D. Rochfort, L. E. Collins, R. P. Murphy, and P. M. Cummins, “Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions,” PLoS ONE, vol. 9, no. 7, Article ID e101815, 2014. View at: Publisher Site | Google Scholar
  79. R. Rao, “Oxidative stress-induced disruption of epithelial and endothelial tight junctions,” Frontiers in Bioscience, vol. 13, no. 18, pp. 7210–7226, 2008. View at: Publisher Site | Google Scholar
  80. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” CA: A Cancer Journal for Clinicians, vol. 65, no. 2, pp. 87–108, 2015. View at: Publisher Site | Google Scholar
  81. P. A. Coulombe and C.-H. Lee, “Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath,” Journal of Investigative Dermatology, vol. 132, no. 3, pp. 763–775, 2012. View at: Publisher Site | Google Scholar
  82. M. Moravcová, A. Libra, J. Dvořáková et al., “Modulation of keratin 1, 10 and involucrin expression as part of the complex response of the human keratinocyte cell line HaCaT to ultraviolet radiation,” Interdisciplinary Toxicology, vol. 6, no. 4, pp. 203–208, 2013. View at: Publisher Site | Google Scholar
  83. S. Bekeschus, A. Schmidt, L. Bethge et al., “Redox stimulation of human THP-1 monocytes in response to cold physical plasma,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 5910695, 11 pages, 2016. View at: Publisher Site | Google Scholar
  84. S. Tamiji, J.-C. Beauvillain, L. Mortier et al., “Induction of apoptosis-like mitochondrial impairment triggers antioxidant and Bcl-2-dependent keratinocyte differentiation,” Journal of Investigative Dermatology, vol. 125, no. 4, pp. 647–658, 2005. View at: Publisher Site | Google Scholar
  85. J. S. Breitenbach, M. Rinnerthaler, A. Trost et al., “Transcriptome and ultrastructural changes in dystrophic epidermolysis bullosa resemble skin aging,” Aging, vol. 7, no. 6, pp. 389–411, 2015. View at: Google Scholar
  86. F. J. D. Smith, A. D. Irvine, A. Terron-Kwiatkowski et al., “Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris,” Nature Genetics, vol. 38, no. 3, pp. 337–342, 2006. View at: Publisher Site | Google Scholar
  87. J. P. Thyssen and S. Kezic, “Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 134, no. 4, pp. 792–799, 2014. View at: Publisher Site | Google Scholar
  88. W. P. Vermeij, A. Alia, and C. Backendorf, “ROS quenching potential of the epidermal cornified cell envelope,” Journal of Investigative Dermatology, vol. 131, no. 7, pp. 1435–1441, 2011. View at: Publisher Site | Google Scholar
  89. E. A. O'Toole, “Extracellular matrix and keratinocyte migration,” Clinical and Experimental Dermatology, vol. 26, no. 6, pp. 525–530, 2001. View at: Publisher Site | Google Scholar
  90. W. C. Parks, “Matrix metalloproteinases in repair,” Wound Repair and Regeneration, vol. 7, no. 6, pp. 423–432, 1999. View at: Publisher Site | Google Scholar
  91. W. C. Parks, Y. S. López-Boado, and C. L. Wilson, “Matrilysin in epithelial repair and defense,” Chest, vol. 120, no. 1, supplement, pp. 36S–41S, 2001. View at: Publisher Site | Google Scholar
  92. A. B. Wysocki, L. Staiano-Coico, and F. Grinnell, “Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9,” Journal of Investigative Dermatology, vol. 101, no. 1, pp. 64–68, 1993. View at: Publisher Site | Google Scholar
  93. J. Rohl and R. Murray, “Matrix metalloproteinases during wound healing-a double edged sword,” Wound Practice and Research, vol. 21, no. 4, pp. 174–182, 2013. View at: Google Scholar
  94. C. Gebhardt, J. Németh, P. Angel, and J. Hess, “S100A8 and S100A9 in inflammation and cancer,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1622–1631, 2006. View at: Publisher Site | Google Scholar
  95. D. N. Granger, T. Vowinkel, and T. Petnehazy, “Modulation of the inflammatory response in cardiovascular disease,” Hypertension, vol. 43, no. 5, pp. 924–931, 2004. View at: Publisher Site | Google Scholar
  96. B. Behm, P. Babilas, M. Landthaler, and S. Schreml, “Cytokines, chemokines and growth factors in wound healing,” Journal of the European Academy of Dermatology and Venereology, vol. 26, no. 7, pp. 812–820, 2012. View at: Publisher Site | Google Scholar
  97. Y.-C. Liao, W.-G. Liang, F.-W. Chen, J.-H. Hsu, J.-J. Yang, and M.-S. Chang, “IL-19 induces production of IL-6 and TNF-α and results in cell apoptosis through TNF-α,” Journal of Immunology, vol. 169, no. 8, pp. 4288–4297, 2002. View at: Publisher Site | Google Scholar
  98. R. W. Tarnuzzer and G. S. Schultz, “Biochemical analysis of acute and chronic wound environments,” Wound Repair and Regeneration, vol. 4, no. 3, pp. 321–325, 1996. View at: Publisher Site | Google Scholar
  99. C. C. Finnerty, D. N. Herndon, R. Przkora et al., “Cytokine expression profile over time in severely burned pediatric patients,” Shock, vol. 26, no. 1, pp. 13–19, 2006. View at: Publisher Site | Google Scholar
  100. B. A. Mast and G. S. Schultz, “Interactions of cytokines, growth factors, and proteases in acute and chronic wounds,” Wound Repair and Regeneration, vol. 4, no. 4, pp. 411–420, 1996. View at: Publisher Site | Google Scholar
  101. M. C. Peral, M. M. Rachid, N. M. Gobbato, M. A. Huaman Martinez, and J. C. Valdez, “Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with Lactobacillus plantarum,” Clinical Microbiology and Infection, vol. 16, no. 3, pp. 281–286, 2010. View at: Publisher Site | Google Scholar
  102. R. H. Weisbart, L. Kwan, D. W. Golde, and J. C. Gasson, “Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants,” Blood, vol. 69, no. 1, pp. 18–21, 1987. View at: Google Scholar
  103. A. Barton, K. Wende, L. Bundscherer et al., “Non-thermal plasma increases expression of wound healing related genes in a keratinocyte cell line,” Plasma Medicine, vol. 3, no. 1-2, pp. 125–136, 2013. View at: Publisher Site | Google Scholar
  104. M. F. Nold, C. A. Nold-Petry, J. A. Zepp, B. E. Palmer, P. Bufler, and C. A. Dinarello, “IL-37 is a fundamental inhibitor of innate immunity,” Nature Immunology, vol. 11, no. 11, pp. 1014–1022, 2010. View at: Publisher Site | Google Scholar
  105. V. Shreedhar, T. Giese, V. W. Sung, and S. E. Ullrich, “A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression,” The Journal of Immunology, vol. 160, no. 8, pp. 3783–3789, 1998. View at: Google Scholar
  106. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, “Growth factors and cytokines in wound healing,” Wound Repair and Regeneration, vol. 16, no. 5, pp. 585–601, 2008. View at: Publisher Site | Google Scholar
  107. K. Wende, S. Straßenburg, B. Haertel et al., “Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology,” Cell Biology International, vol. 38, no. 4, pp. 412–425, 2014. View at: Publisher Site | Google Scholar

Copyright © 2016 Anke Schmidt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1581 Views | 720 Downloads | 28 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder
 Sign up for content alertsSign up

You are browsing a BETA version of Hindawi.com. Click here to switch back to the original design.