Abstract

Some new Gronwall-Bellman-type delay integral inequalities in two independent variables on time scales are established, which provide a handy tool in the research of qualitative and quantitative properties of solutions of delay dynamic equations on time scales. The established inequalities generalize some of the results in the work of Zhang and Meng 2008, Pachpatte 2002, and Ma 2010.

1. Introduction

During the past decades, with the development of the theory of differential and integral equations, a lot of integral and difference inequalities have been discovered, which play an important role in the research of boundedness, global existence, stability of solutions of differential and integral equations as well as difference equations. In these established inequalities, Gronwall-Bellman-type inequalities are of particular importance as these inequalities provide explicit bounds for unknown functions, and much effort has been done for developing such inequalities (e.g., see [113] and the references therein). On the other hand, Hilger [14] initiated the theory of time scales as a theory capable containing both difference and differential calculus in a consistent way. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales (e.g., see [1517] and the references therein). In these investigations, integral inequalities on time scales have been paid much attention by many authors, and a lot of integral inequalities on time scales have been established (e.g., see [1826]), which have been designed to unify continuous and discrete analysis and play an important role in the research of qualitative and quantitative properties of solutions of certain dynamic equations on time scales. But to our knowledge, Gronwall-Bellman-type delay integral inequalities on time scales have been paid little attention in the literature so far. Recent results in this direction include the works of Li [27] and Ma and Pečarić [28] to our best knowledge. Furthermore, nobody has studied Gronwall-Bellman-type delay integral inequalities in two independent variables on time scales.

Our aim in this paper is to establish some new Gronwall-Bellman-type delay integral inequalities in two independent variables on time scales, which unify some known continuous and discrete analysis. New explicit bounds for unknown functions are obtained due to the presented inequalities. We will also present some applications for our results.

First we will give some preliminaries on time scales and some universal symbols for further use.

Throughout the paper, denotes the set of real numbers and +=[0,), while denotes the set of integers. For two given sets 𝐺, 𝐻, we denote the set of maps from 𝐺 to 𝐻 by (𝐺,𝐻).

A time scale is an arbitrary nonempty closed subset of the real numbers. In this paper, 𝕋 denotes an arbitrary time scale. On 𝕋 we define the forward and backward jump operators 𝜎(𝕋,𝕋) and 𝜌(𝕋,𝕋) by 𝜎(𝑡)=inf{𝑠𝕋,𝑠>𝑡}and𝜌(𝑡)=sup{𝑠𝕋,𝑠<𝑡}.

Definition 1.1. The graininess 𝜇(𝕋,+) is defined by 𝜇(𝑡)=𝜎(𝑡)𝑡.

Remark 1.2. Obviously, 𝜇(𝑡)=0 if 𝕋= while 𝜇(𝑡)=1 if 𝕋=.

Definition 1.3. A point 𝑡𝕋 is said to be left-dense if 𝜌(𝑡)=𝑡 and 𝑡inf𝕋, right-dense if 𝜎(𝑡)=𝑡 and 𝑡sup𝕋, left-scattered if 𝜌(𝑡)<𝑡, and right-scattered if 𝜎(𝑡)>𝑡.

Definition 1.4. The set 𝕋𝜅 is defined to be 𝕋 if 𝕋 does not have a left-scattered maximum, otherwise it is 𝕋 without the left-scattered maximum.

Definition 1.5. A function 𝑓(𝕋,) is called rd-continuous if it is continuous at right-dense points and if the left-sided limits exist at left-dense points, while 𝑓 is called regressive if 1+𝜇(𝑡)𝑓(𝑡)0. 𝐶rd denotes the set of rd-continuous functions, while denotes the set of all regressive and rd-continuous functions, and +={𝑓𝑓,1+𝜇(𝑡)𝑓(𝑡)>0,𝑡𝕋}.

Definition 1.6. For some 𝑡𝕋𝜅 and a function 𝑓(𝕋,), the delta derivative of 𝑓 is denoted by 𝑓Δ(𝑡) and satisfies ||𝑓(𝜎(𝑡))𝑓(𝑠)𝑓Δ||||||(𝑡)(𝜎(𝑡)𝑠)𝜀𝜎(𝑡)𝑠for𝜀>0,(1.1) where 𝑠𝔘, and 𝔘 is a neighborhood of 𝑡 which can depend on 𝜀.
Similarly, for some 𝑦𝕋𝜅 and a function 𝑓(𝕋×𝕋,), the partial delta derivative of 𝑓 with respect to 𝑦 is denoted by (𝑓(𝑥,𝑦))Δ𝑦 or 𝑓Δ𝑦(𝑥,𝑦) and satisfies ||𝑓(𝑥,𝜎(𝑦))𝑓(𝑥,𝑠)𝑓Δ𝑦||||||(𝑥,𝑦)(𝜎(𝑦)𝑠)𝜀𝜎(𝑦)𝑠for𝜀>0,(1.2) where 𝑠𝔘, and 𝔘 is a neighborhood of 𝑦 which can depend on 𝜀.

Remark 1.7. If 𝕋=, then 𝑓Δ(𝑡) becomes the usual derivative 𝑓(𝑡), while 𝑓Δ(𝑡)=𝑓(𝑡+1)𝑓(𝑡) if 𝕋=, which represents the forward difference.

Definition 1.8. For 𝑎,𝑏𝕋 and a function 𝑓(𝕋,), the Cauchy integral of 𝑓 is defined by 𝑏𝑎𝑓(𝑡)Δ𝑡=𝐹(𝑏)𝐹(𝑎),(1.3) where 𝐹Δ(𝑡)=𝑓(𝑡),𝑡𝕋𝜅.
Similarly, for 𝑎,𝑏𝕋 and a function 𝑓(𝕋×𝕋,), the Cauchy partial integral of 𝑓 with respect to 𝑦 is defined by 𝑏𝑎𝑓(𝑥,𝑦)Δ𝑦=𝐹(𝑥,𝑏)𝐹(𝑥,𝑎),(1.4) where 𝐹Δ𝑦(𝑥,𝑦)=𝑓(𝑥,𝑦),𝑦𝕋𝜅.

Definition 1.9. The cylinder transformation 𝜉 is defined by 𝜉(𝑧)=Log(1+𝑧)1,if0for𝑧,𝑧,if=0,(1.5) where Log is the principal logarithm function.

Definition 1.10. For 𝑝(𝑥,𝑦) with respect to 𝑦, the exponential function is defined by 𝑒𝑝(𝑦,𝑠)=exp𝑦𝑠𝜉𝜇(𝜏)(𝑝(𝑥,𝜏))Δ𝜏,for𝑠,𝑦𝕋.(1.6)

Remark 1.11. If 𝕋=, then for 𝑦 the following formula holds: 𝑒𝑝(𝑦,𝑠)=exp𝑦𝑠𝑝(𝑥,𝜏)𝑑𝜏,for𝑠𝕋.(1.7) If 𝕋=, then, for 𝑦, 𝑒𝑝(𝑦,𝑠)=𝑦1𝜏=𝑠[1+𝑝(𝑥,𝜏)],for𝑠 and 𝑠<𝑦.

The following two theorems include some known properties on the exponential function.

Theorem 1.12. If 𝑝(𝑥,𝑦) with respect to 𝑦, then the following conclusions hold: (i)𝑒𝑝(𝑦,𝑦)1 and 𝑒0(𝑠,𝑦)1,(ii)𝑒𝑝(𝑠,𝜎(𝑦))=(1+𝜇(𝑦)𝑝(𝑥,𝑦))𝑒𝑝(𝑠,𝑦),(iii) if 𝑝+ with respect to 𝑦, then 𝑒𝑝(𝑠,𝑦)>0 for all 𝑠,𝑦𝕋,(iv) if 𝑝+ with respect to 𝑦, then 𝑝+,(v)𝑒𝑝(𝑠,𝑦)=1/𝑒𝑝(𝑦,𝑠)=𝑒𝑝(𝑦,𝑠), where (𝑝)(𝑥,𝑦)=(𝑝(𝑥,𝑦)/1+𝜇(𝑦)𝑝(𝑥,𝑦)).

Theorem 1.13. If 𝑝(𝑥,𝑦) with respect to 𝑦,𝑦0𝕋 is a fixed number, then the exponential function 𝑒𝑝(𝑦,𝑦0) is the unique solution of the following initial value problem: 𝑧Δ𝑦(𝑧𝑥,𝑦)=𝑝(𝑥,𝑦)𝑧(𝑥,𝑦),𝑥,𝑦0=1.(1.8)

Theorems 1.12-1.13 are similar to [24, Theorems 5.1-5.2]. For more details about the calculus of time scales, we advise to refer to [29].

In the rest of this paper, for the convenience of notation, we always assume that 𝕋0=[𝑥0𝕋,)𝕋,0=[𝑦0𝕋,), where 𝑥0,𝑦0𝕋𝜅, and furthermore assume that 𝕋0𝕋𝜅,𝕋0𝕋𝜅.

2. Main Results

We will give some lemmas for further use.

Lemma 2.1. Suppose that 𝑋𝕋0 is a fixed number and 𝑢(𝑋,𝑦),𝑏(𝑋,𝑦)𝐶rd,𝑚(𝑋,𝑦)+ with respect to 𝑦, 𝑚(𝑋,𝑦)0; then 𝑢(𝑋,𝑦)𝑎(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝕋𝑚(𝑋,𝑡)𝑢(𝑋,𝑡)Δ𝑡,𝑦0,(2.1) implies 𝑢(𝑋,𝑦)𝑎(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝑒𝑚𝕋(𝑦,𝜎(𝑡))𝑎(𝑋,𝑡)𝑚(𝑋,𝑡)Δ𝑡,𝑦0,(2.2) where 𝑚(𝑋,𝑦)=𝑚(𝑋,𝑦)𝑏(𝑋,𝑦), and 𝑒𝑚(𝑦,𝑦0) is the unique solution of the following IVP 𝑧Δ𝑦(𝑋,y)=𝑚(𝑋,𝑦)𝑧(𝑋,𝑦),𝑧𝑋,𝑦0=1.(2.3)

The proof of Lemma 2.1 is similar to that of [24, Theorem 5.6], and we omit it here.

Lemma 2.2. Under the conditions of Lemma 2.1 and furthermore assuming that 𝑎(𝑥,𝑦) is nondecreasing in 𝑦 for every fixed 𝑥,𝑏(𝑥,𝑦)1, then one has 𝑢(𝑋,𝑦)𝑎(𝑋,𝑦)𝑒𝑚𝑦,𝑦0.(2.4)

Proof. Since 𝑎(𝑥,𝑦) is nondecreasing in 𝑦 for every fixed 𝑥, then from Lemma 2.1 we have 𝑢(𝑋,𝑦)𝑎(𝑋,𝑦)+𝑦𝑦0𝑒𝑚(𝑦,𝜎(𝑡))𝑎(𝑋,𝑡)𝑚(𝑋,𝑡)Δ𝑡𝑎(𝑋,𝑦)1+𝑦𝑦0𝑒𝑚.(𝑦,𝜎(𝑡))𝑚(𝑋,𝑡)Δ𝑡(2.5) On the other hand, from [29, Theorems 2.39 and 2.36 (i)] we have 1+𝑦𝑦0𝑒𝑚(𝑦,𝜎(𝑡))𝑚(𝑋,𝑡)Δ𝑡=𝑒𝑚(𝑦,𝑦0).
Then collecting the above information we can obtain the desired inequality.

Lemma 2.3 (see [30]). Assume that 𝑎0,𝑝𝑞0, and 𝑝0, then for any 𝐾>0𝑎𝑞/𝑝𝑞𝑝𝐾(𝑞𝑝)/𝑝𝑎+𝑝𝑞𝑝𝐾𝑞/𝑝.(2.6)

Theorem 2.4. Suppose that 𝑢,𝑓,𝑔,,𝑎,𝑏𝐶rd(𝕋0×𝕋0,+) and 𝑎,𝑏 are nondecreasing. 𝑝,𝑞,𝑟,𝑚 are constants, and 𝑝𝑞0,𝑝𝑟0,𝑝𝑚0,𝑝0.𝜏1(𝕋0,𝕋),𝜏1(𝑥)𝑥,<𝛼=inf{𝜏1(𝑥),𝑥𝕋0}𝑥0. 𝜏2𝕋(0,𝕋),𝜏2(𝑦)𝑦,<𝛽=inf{𝜏2𝕋(𝑦),𝑦0}𝑦0. 𝜙𝐶rd(([𝛼,𝑥0]×[𝛽,𝑦0𝕋])2,+). If for (𝑥,𝑦)𝕋0×𝕋0, 𝑢(𝑥,𝑦) satisfies the following inequality: 𝑢𝑝(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑏(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝑓(𝑠,𝑡)𝑢𝑞𝜏1(𝑠),𝜏2(𝑡)+𝑔(𝑠,𝑡)𝑢𝑟(𝑠,𝑡)Δ𝑠Δ𝑡+𝑏(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑢𝑚𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.7) with the initial condition 𝑢(𝑥,𝑦)=𝜙(𝑥,𝑦),if𝑥𝛼,𝑥0𝕋,or𝑦𝛽,𝑦0𝜙𝜏𝕋,1(𝑥),𝜏2(𝑦)𝛼1/𝑝(𝑥,𝑦),if𝜏1(𝑥)𝑥0or𝜏2(𝑦)𝑦0,(𝑥,𝑦)𝕋0×𝕋0,(2.8) then 𝐵𝑢(𝑥,𝑦)1(𝑥,𝑦)+𝑏(𝑥,𝑦)𝑦𝑦0𝑒𝐵2(𝑦,𝜎(𝑡))𝐵2(𝑥,𝑡)𝐵1(𝑥,𝑡)Δ𝑡1/𝑝,(𝑥,𝑦)𝕋0×𝕋0,(2.9) where 𝐵1(𝑥,𝑦)=𝑎(𝑥,𝑦)+𝑏(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝑓(𝑠,𝑡)𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔(𝑠,𝑡)𝑝𝑟𝑝𝐾𝑟/𝑝Δ𝑠Δ𝑡+𝑏(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑝𝑚𝑝𝐾𝑚/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡,𝐾>0,(2.10)𝐵2(𝑥,𝑦)=𝑥𝑥0𝑞𝑓(𝑠,𝑦)𝑝𝐾(𝑞𝑝)/𝑝𝑟+𝑔(𝑠,𝑦)𝑝𝐾(𝑟𝑝)/𝑝+𝑦𝑦0𝑠𝑥0𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝Δ𝜉Δ𝜂Δ𝑠,𝐾>0,(2.11)𝐵2(𝑥,𝑦)=𝑏(𝑥,𝑦)𝐵2(𝑥,𝑦).(2.12)

Proof. Let the right side of (2.7) be 𝑣(𝑥,𝑦). Then 𝑢(𝑥,𝑦)𝑣1/𝑝(𝑥,𝑦),(𝑥,𝑦)𝕋0×𝕋0.(2.13) If 𝜏1(𝑥)𝑥0 and 𝜏2(𝑦)𝑦0, then 𝜏1(𝑥)𝕋0,𝜏2𝕋(𝑦)0, and since 𝑎,𝑏 are nondecreasing we have 𝑢𝜏1(𝑥),𝜏2(𝑦)𝑣1/𝑝𝜏1(𝑥),𝜏2(𝑦)𝑣1/𝑝(𝑥,𝑦).(2.14) If 𝜏1(𝑥)𝑥0 or 𝜏2(𝑦)𝑦0, then from (2.8) we have 𝑢𝜏1(𝑥),𝜏2𝜏(𝑦)=𝜙1(𝑥),𝜏2(𝑦)𝑎1/𝑝(𝑥,𝑦)𝑣1/𝑝(𝑥,𝑦).(2.15) From (2.14) and (2.15) we have 𝑢𝜏1(𝑥),𝜏2(𝑦)𝑣1/𝑝(𝑥,𝑦),(𝑥,𝑦)𝕋0×𝕋0.(2.16) Fix 𝑋𝕋0, and let 𝑥[𝑥0𝕋,𝑋]𝕋,𝑦0; then 𝑣(𝑋,𝑦)=𝑎(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑓(𝑠,𝑡)𝑢𝑞𝜏1(𝑠),𝜏2(𝑡)+𝑔(𝑠,𝑡)𝑢𝑟(𝑠,𝑡)Δ𝑠Δ𝑡+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑢𝑚𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑎(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑓(𝑠,𝑡)𝑣𝑞/𝑝(𝑠,𝑡)+𝑔(𝑠,𝑡)𝑣𝑟/𝑝+(𝑠,𝑡)𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑣𝑚/𝑝(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(2.17) From Lemma 2.3, we have 𝑣𝑞/𝑝𝑞(𝑥,𝑦)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝑥,𝑦)+𝑝𝑞𝑝𝐾𝑞/𝑝,𝑣𝑟/𝑝𝑟(𝑥,𝑦)𝑝𝐾(𝑟𝑝)/𝑝𝑣(𝑥,𝑦)+𝑝𝑟𝑝𝐾𝑟/𝑝,𝑣𝑚/𝑝(𝑚𝑥,𝑦)𝑝𝐾(𝑚𝑝)/𝑝𝑣(𝑥,𝑦)+𝑝𝑚𝑝𝐾𝑚/𝑝,𝐾>0.(2.18) So combining (2.17) and (2.18), it follows that 𝑣(𝑋,𝑦)𝑎(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑞𝑓(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝𝑞𝑝𝐾𝑞/𝑝Δ𝑠Δ𝑡+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑔𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝𝑟𝑝𝐾𝑟/𝑝Δ𝑠Δ𝑡+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥0𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝑣(𝜉,𝜂)+𝑝𝑚𝑝𝐾𝑚/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑎(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑓(𝑠,𝑡)𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔(𝑠,𝑡)𝑝𝑟𝑝𝐾𝑟/𝑝+𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑝𝑚𝑝𝐾𝑚/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡+𝑏(𝑋,𝑦)𝑦𝑦0𝑋𝑥0𝑞𝑓(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝑟+𝑔(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝+𝑡𝑦0𝑠𝑥0𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝Δ𝜉Δ𝜂Δ𝑠𝑣(𝑋,𝑡)Δ𝑡=𝐵1(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝐵2(𝑋,𝑡)𝑣(𝑋,𝑡)Δ𝑡,(2.19) where 𝐵1(𝑥,𝑦),𝐵2(𝑥,𝑦) are defined in (2.10) and (2.11), respectively. Considering 𝐵2(𝑋,𝑦)=𝑏(𝑋,𝑦)𝐵2(𝑋,𝑦), by application of Lemma 2.1, we have 𝑣(𝑋,𝑦)𝐵1(𝑋,𝑦)+𝑏(𝑋,𝑦)𝑦𝑦0𝑒𝐵2(𝑦,𝜎(𝑡))𝐵2(𝑋,𝑡)𝐵1𝕋(𝑋,𝑡)Δ𝑡,𝑦0.(2.20) Since 𝑋𝕋0 is arbitrary, then in fact (2.20) holds for all 𝑥𝕋0, that is, 𝑣(𝑥,𝑦)𝐵1(𝑥,𝑦)+𝑏(𝑥,𝑦)𝑦𝑦0𝑒𝐵2(𝑦,𝜎(𝑡))𝐵2(𝑥,𝑡)𝐵1𝕋(𝑥,𝑡)Δ𝑡,(𝑥,𝑦)0×𝕋0.(2.21) Combining (2.13) and (2.21), we obtain 𝐵𝑢(𝑥,𝑦)1(𝑥,𝑦)+𝑏(𝑥,𝑦)𝑦𝑦0𝑒𝐵2(𝑦,𝜎(𝑡))𝐵2(𝑥,𝑡)𝐵1(𝑥,𝑡)Δ𝑡1/𝑝𝕋,(𝑥,𝑦)0×𝕋0,(2.22) which is the desired inequality.

If we apply Lemma 2.2 instead of Lemma 2.1 at the end of the proof of Theorem 2.4, we obtain the following theorem.

Theorem 2.5. Suppose that 𝑢,𝑓,𝑔,,𝑎,𝑝,𝑞,𝑟,𝑚,𝜏1,𝜏2,𝛼,𝛽,𝜙 are defined as in Theorem 2.4. If that for (𝑥,𝑦)𝕋0×𝕋0,𝑢(𝑥,𝑦) satisfies the following inequality: 𝑢𝑝(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0𝑓(𝑠,𝑡)𝑢𝑞𝜏1(𝑠),𝜏2(𝑡)+𝑔(𝑠,𝑡)𝑢𝑟+(𝑠,𝑡)𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑢𝑚𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡(2.23) with the initial condition (2.8), then 𝐵𝑢(𝑥,𝑦)1(𝑥,𝑦)𝑒𝐵2𝑦,𝑦01/𝑝,(𝑥,𝑦)𝕋0×𝕋0,(2.24) where 𝐵1(𝑥,𝑦)=𝑎(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0𝑓(𝑠,𝑡)𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔(𝑠,𝑡)𝑝𝑟𝑝𝐾𝑟/𝑝+Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑝𝑚𝑝𝐾𝑚/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠Δ𝑡,𝐾>0,2(𝑥,𝑦)=𝑥𝑥0𝑞𝑓(𝑠,𝑦)𝑝𝐾(𝑞𝑝)/𝑝𝑟+𝑔(𝑠,𝑦)𝑝𝐾(𝑟𝑝)/𝑝+𝑦𝑦0𝑠𝑥0𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝Δ𝜉Δ𝜂Δ𝑠,𝐾>0.(2.25)

From Theorems 2.4 and 2.5 we can obtain two direct corollaries.

Corollary 2.6. Under the conditions of Theorem 2.4, if, for (𝑥,𝑦)𝕋0×𝕋0, 𝑢(𝑥,𝑦) satisfies the following inequality: 𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0𝜏𝑓(𝑠,𝑡)𝑢1(𝑠),𝜏2+(𝑡)+𝑔(𝑠,𝑡)𝑢(𝑠,𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥0𝜏(𝜉,𝜂)𝑢1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.26) with the initial condition (2.8) (p=1), then 𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑦𝑦0𝑒𝐵2(𝑦,𝜎(𝑡))𝐵2(𝑥,𝑡)𝑎(𝑥,𝑡)Δ𝑡,(𝑥,𝑦)𝕋0×𝕋0,(2.27) where 𝐵2(𝑥,𝑦)=𝑥𝑥0𝑓(𝑠,𝑦)+𝑔(𝑠,𝑦)+𝑦𝑦0𝑠𝑥0(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠.(2.28)

Corollary 2.7. Under the conditions of Theorem 2.5, if, for (𝑥,𝑦)𝕋0×𝕋0, 𝑢(𝑥,𝑦) satisfies the following inequality: 𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0𝜏𝑓(𝑠,𝑡)𝑢1(𝑠),𝜏2+(𝑡)+𝑔(𝑠,𝑡)𝑢(𝑠,𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥0𝜏(𝜉,𝜂)𝑢1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.29) with the initial condition (2.8) (𝑝=1), then 𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)𝑒𝐵2𝑦,𝑦0,(𝑥,𝑦)𝕋0×𝕋0,(2.30) where 𝐵2(𝑥,𝑦)=𝑥𝑥0𝑓(𝑠,𝑦)+𝑔(𝑠,𝑦)+𝑦𝑦0𝑠𝑥0(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠.(2.31)

Theorem 2.8. Suppose that 𝑢𝐶rd(𝕋0×𝕋0,+), 𝑓,𝑔,,𝜏1,𝜏2 are defined as in Theorem 2.4, and 𝜏1(𝑥)𝑥0, 𝜏2(𝑦)𝑦0. If, for (𝑥,𝑦)𝕋0×𝕋0,𝑢(𝑥,𝑦) satisfies the following inequality: 𝑢(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝜏𝑓(𝑠,𝑡)𝑢1(𝑠),𝜏2(𝑡)+𝑔(𝑠,𝑡)𝑢(𝑠,𝑡)+𝑡𝑦0𝑠𝑥0𝜏(𝜉,𝜂)𝑢1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.32) then 𝑢(𝑥,𝑦)0.

The proof of Theorem 2.8 is similar to Theorem 2.4, and we omit it here.

Based on Theorem 2.4, we will establish a class of Volterra-Fredholm-type integral inequality on time scales.

Theorem 2.9. Suppose that 𝑢,𝑓𝑖,𝑔𝑖,𝑖𝐶rd(𝕋0×𝕋0,+),𝑖=1,2.𝑎,𝑝,𝑞,𝑟,𝑚,𝜙,𝜏1,𝜏2,𝛼,𝛽 are the same as in Theorem 2.4, and 𝑀𝕋0𝕋,𝑁0 are two fixed numbers. If, for (𝑥,𝑦)([𝑥0,𝑀]𝕋)×([𝑦0,𝑁]𝕋),𝑢(𝑥,𝑦) satisfies the following inequality: 𝑢𝑝(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0𝑓1(𝑠,𝑡)𝑢𝑞𝜏1(𝑠),𝜏2(𝑡)+𝑔1(𝑠,𝑡)𝑢𝑟𝜏1(𝑠),𝜏2+(𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑢𝑚𝜏1(𝜉),𝜏2+(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑓2(𝑠,𝑡)𝑢𝑞𝜏1(𝑠),𝜏2(𝑡)+𝑔2(𝑠,𝑡)𝑢𝑟𝜏1(𝑠),𝜏2+(𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑢𝑚𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.33) with the initial condition (2.8), then one has 𝐵𝑢(𝑥,𝑦)𝜆+6𝐵15𝐵3𝐵(𝑥,𝑦)+4(𝑥,𝑦)1/𝑝𝑥,(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,,𝑁(2.34) provided that 𝐵5<1, where 𝜆=𝑁𝑦0𝑀𝑥0𝑓2(𝑠,𝑡)𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔2(𝑠,𝑡)𝑝𝑟𝑝𝐾𝑟/𝑝+𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑝𝑚𝑝𝐾𝑚/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.35)1(𝑥,𝑦)=𝑎(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0𝑓1(𝑠,𝑡)𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔1(𝑠,𝑡)𝑝𝑟𝑝𝐾𝑟/𝑝+Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑝𝑚𝑝𝐾𝑚/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠Δ𝑡,𝐾>0,(2.36)2(𝑥,𝑦)=𝑥𝑥0𝑓1𝑞(𝑠,𝑦)𝑝𝐾(𝑞𝑝)/𝑝+𝑔1𝑟(𝑠,𝑦)𝑝𝐾(𝑟𝑝)/𝑝+𝑦𝑦0𝑠𝑥01𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠,𝐾>0,(2.37)3(𝑥,𝑦)=1+𝑦𝑦0𝑒𝐵2(𝐵𝑦,𝜎(𝑡))2(𝐵𝑥,𝑡)Δ𝑡,(2.38)4𝐵(𝑥,𝑦)=1(𝑥,𝑦)+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2𝐵(𝑥,𝑡)1𝐵(𝑥,𝑡)Δ𝑡,(2.39)5=𝑁𝑦0𝑀𝑥0𝑓2(𝑞𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝐵3(𝑠,𝑡)+𝑔2(𝑟𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝐵3(+𝑠,𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡y0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝐵3𝐵(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.40)6=𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝐵4(𝑠,𝑡)+𝑔2𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝐵4+(𝑠,𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝐵4(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(2.41)

Proof. Let the right side of (2.33) be 𝑣(𝑥,𝑦) and 𝜇=𝑁𝑦0𝑀𝑥0𝑓2(𝑠,𝑡)𝑢𝑞𝜏1(𝑠),𝜏2(𝑡)+𝑔2(𝑠,𝑡)𝑢𝑟𝜏1(𝑠),𝜏2+(𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑢𝑚𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(2.42) Then 𝑢(𝑥,𝑦)𝑣1/𝑝𝑥(𝑥,𝑦),(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,𝑁.(2.43) Similar to the process of (2.14)–(2.16) one has 𝑢𝜏1(𝑥),𝜏2(𝑦)𝑣1/𝑝𝑥(𝑥,𝑦),(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,𝑁.(2.44) Fix 𝑋[𝑥0𝕋,𝑀], and let 𝑥[𝑥0,𝑋]𝕋,𝑦[𝑦0𝕋,𝑁]. Then 𝑣(𝑋,𝑦)=𝑎(𝑋,𝑦)+𝜇+𝑦𝑦0𝑋𝑥0𝑓1(𝑠,𝑡)𝑢𝑞𝜏1(𝑠),𝜏2(𝑡)+𝑔1(𝑠,𝑡)𝑢𝑟𝜏1(𝑠),𝜏2+(𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑢𝑚𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑎(𝑋,𝑦)+𝜇+𝑦𝑦0𝑋𝑥0𝑓1(𝑠,𝑡)𝑣𝑞/𝑝(𝑠,𝑡)+𝑔1(𝑠,𝑡)𝑣𝑟/𝑝+(𝑠,𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑣𝑚/𝑝(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(2.45) Considering the structure of (2.45) is similar to (2.17), then following in a same manner as the process of (2.17)–(2.20) we can deduce 𝐵𝑣(𝑋,𝑦)𝜇+1(𝑋,𝑦)+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2𝐵(𝑋,𝑡)𝜇+1(𝑋,𝑡)Δ𝑡=𝜇1+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2+𝐵(𝑋,𝑡)Δ𝑡1+(𝑋,𝑦)𝑦𝑦0𝑒𝐵2(𝐵𝑦,𝜎(𝑡))2(𝐵𝑋,𝑡)1(𝑦𝑋,𝑡)Δ𝑡,𝑦0,𝑁𝕋,(2.46) where 𝐵1𝐵(𝑥,𝑦),2(𝑥,𝑦) are defined in (2.36) and (2.37), respectively.
Since 𝑋 is selected from [𝑥0𝕋,𝑀] arbitrarily, then in fact (2.46) holds for all 𝑥𝕋0, that is, 𝑣(𝑥,𝑦)𝜇1+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2+𝐵(𝑥,𝑡)Δ𝑡1(𝑥,𝑦)+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2𝐵(𝑥,𝑡)1𝐵(𝑥,𝑡)Δ𝑡=𝜇3𝐵(𝑥,𝑦)+4𝑥(𝑥,𝑦),(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,,𝑁(2.47) where 𝐵3𝐵(𝑥,𝑦),4(𝑥,𝑦) are defined in (2.38) and (2.39), respectively.
On the other hand, from (2.18), (2.42), and (2.44) we obtain 𝜇𝑁𝑦0𝑀𝑥0𝑓2(𝑠,𝑡)𝑣𝑞/𝑝(𝑠,𝑡)+𝑔2(𝑠,𝑡)𝑣𝑟/𝑝(𝑠,𝑡)+𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑣𝑚/𝑝(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔2𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝𝑟𝑝𝐾𝑟/𝑝+Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝑣(𝜉,𝜂)+𝑝𝑚𝑝𝐾𝑚/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡=𝜆+𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝑠,𝑡)+𝑔2𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝+𝑣(𝑠,𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝑣(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.48) where 𝜆 is defined in (2.35). Then using (2.47) in (2.48) yields 𝜇𝜆+𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝜇𝐵3𝐵(𝑠,𝑡)+4(𝑠,𝑡)+𝑔2𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝜇𝐵3𝐵(𝑠,𝑡)+4+(𝑠,𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝜇𝐵3𝐵(𝜉,𝜂)+4(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡=𝜆+𝜇𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝐵3(𝑠,𝑡)+𝑔2𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝐵3+(𝑠,𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝐵3+(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝐵4(𝑠,𝑡)+𝑔2𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝐵4+(𝑠,𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝐵4𝐵(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡=𝜆+𝜇5+𝐵6,(2.49) which implies𝐵𝜇𝜆+6𝐵15.(2.50) Combining (2.43), (2.47), and (2.50) we can obtain the desired inequality (2.34).

In the proof of Theorem 2.9, if we let the right side of (2.33) be 𝑎(𝑥,𝑦)+𝑣(𝑥,𝑦) in the first statement, then following in a same process as in Theorem 2.9 we obtain another bound on the function 𝑢(𝑥,𝑦), which is shown in the following theorem.

Theorem 2.10. Under the conditions of Theorem 2.9, if, for (𝑥,𝑦)([𝑥0,𝑀]𝕋)×([𝑦0,𝑁]𝕋), 𝑢(𝑥,𝑦) satisfies (2.33) with the initial condition (2.8), then the following inequality holds: 𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)+𝜇+𝐽1(𝑥,𝑦)̃𝜆𝑒1𝐽2𝑦,𝑦01/𝑝𝑥,(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,,𝑁(2.51) provided that ̃𝜆<1, where ̃𝜆=𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝑒𝐽2𝑡,𝑦0+𝑔2𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝑒𝐽2𝑡,𝑦0+Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝑒𝐽2𝜂,𝑦0Δ𝜉Δ𝜂Δ𝑠Δ𝑡,𝜇=𝑁𝑦0𝑀𝑥0𝑓2𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝑎(𝑠,𝑡)+𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔2(𝑟𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝑎(𝑠,𝑡)+𝑝𝑟𝑝𝐾𝑟/𝑝+𝑡𝑦0𝑠𝑥02𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝+(𝑎(𝜉,𝜂)+𝑣(𝜉,𝜂))𝑝𝑚𝑝𝐾𝑚/𝑝𝐽Δ𝜉Δ𝜂Δ𝑠Δ𝑡,1(𝑥,𝑦)=𝑦𝑦0𝑥𝑥0𝑓1𝑞(𝑠,𝑡)𝑝𝐾(𝑞𝑝)/𝑝𝑎(𝑠,𝑡)+𝑝𝑞𝑝𝐾𝑞/𝑝+𝑔1𝑟(𝑠,𝑡)𝑝𝐾(𝑟𝑝)/𝑝𝑎(𝑠,𝑡)+𝑝𝑟𝑝𝐾𝑟/𝑝+Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝𝑎(𝜉,𝜂)+𝑝𝑚𝑝𝐾𝑚/𝑝𝐽Δ𝜉Δ𝜂Δ𝑠Δ𝑡,2(𝑥,𝑦)=𝑥𝑥0𝑓1𝑞(𝑠,𝑦)𝑝𝐾(𝑞𝑝)/𝑝+𝑔1𝑟(𝑠,𝑦)𝑝𝐾(𝑟𝑝)/𝑝+𝑦𝑦0𝑠𝑥01𝑚(𝜉,𝜂)𝑝𝐾(𝑚𝑝)/𝑝Δ𝜉Δ𝜂Δ𝑠.(2.52)

Finally, we will establish a more general inequality than that in Theorems 2.9-2.10. Consider the following inequality:𝑢𝑝(+𝑥,𝑦)𝑎(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝐿𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2+(𝑡)𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑢𝑞𝜏1(𝜉),𝜏2+(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐿𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2+(𝑡)𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑢𝑞𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.53) with the initial condition (2.8), where 𝑢,𝑎,𝑝,𝑞,𝜙,𝛼,𝛽,𝜏𝑖,𝑖,𝑖=1,2 are the same as in Theorem 2.4, 𝑀𝕋0𝕋,𝑁0 are two fixed numbers. 𝐿(𝕋0×𝕋0×+,+), and 0𝐿(𝑠,𝑡,𝑥)𝐿(𝑠,𝑡,𝑦)𝐴(𝑠,𝑡,𝑦)(𝑥𝑦) for 𝑥𝑦0, where 𝐴(𝕋0×𝕋0×+,+).

Theorem 2.11. If, for (𝑥,𝑦)([𝑥0,𝑀]𝕋)×([𝑦0,𝑁]𝕋),𝑢(𝑥,𝑦) satisfies (2.53), then the following inequality holds: ̂𝐵𝑢(𝑥,𝑦)𝜆+6𝐵15𝐵3𝐵(𝑥,𝑦)+4(𝑥,𝑦)1/𝑝𝑥,(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,,𝑁(2.54) provided that 𝐵5<1, where ̂𝜆=𝑁𝑦0𝑀𝑥0𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑝𝑞𝑝𝐾𝑞/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.55)1(+𝑥,𝑦)=𝑎(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑝𝑞𝑝𝐾𝑞/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠Δ𝑡,𝐾>0,(2.56)2(𝑥,𝑦)=𝑥𝑥0𝐴𝑠,𝑦,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝+𝑦𝑦0𝑠𝑥01𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠,𝐾>0,(2.57)3(𝑥,𝑦)=1+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2𝐵(𝑥,𝑡)Δ𝑡,(2.58)4(𝐵𝑥,𝑦)=1(𝑥,𝑦)+𝑦𝑦0𝑒𝐵2(𝐵𝑦,𝜎(𝑡))2(𝐵𝑥,𝑡)1(𝐵𝑥,𝑡)Δ𝑡,(2.59)5=𝑁𝑦0𝑀𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝𝐵3+(𝑠,𝑡)𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝐵3𝐵(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.60)6=𝑁𝑦0𝑀𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝𝐵4+(𝑠,𝑡)𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝐵4(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(2.61)

Proof. Let the right side of (2.53) be 𝑣(𝑥,𝑦) and 𝜇=𝑁𝑦0𝑀𝑥0𝐿𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2+(𝑡)𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑢𝑞𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(2.62) Then 𝑢(𝑥,𝑦)𝑣1/𝑝𝑥(𝑥,𝑦),(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,𝑁.(2.63) Similar to the process of (2.14)–(2.16) we have 𝑢𝜏1(𝑥),𝜏2(𝑦)𝑣1/𝑝𝑥(𝑥,𝑦),(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,𝑁.(2.64) Fix 𝑋[𝑥0𝕋,𝑀], and let 𝑥[𝑥0,𝑋]𝕋,𝑦[𝑦0𝕋,𝑁]. Then +𝑣(𝑋,𝑦)=𝑎(𝑋,𝑦)+𝜇𝑦𝑦0𝑋𝑥0𝐿𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2(+𝑡)𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑢𝑞𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑎(𝑋,𝑦)+𝜇+𝑦𝑦0𝑋𝑥0𝐿𝑠,𝑡,𝑣1/𝑝+(𝑠,𝑡)𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑣𝑞/𝑝(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(2.65) From Lemma 2.3, we have 𝑣𝑞/𝑝𝑞(𝑥,𝑦)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝑥,𝑦)+𝑝𝑞𝑝𝐾𝑞/𝑝,𝑣1/𝑝1(𝑥,𝑦)𝑝𝐾(1𝑝)/𝑝𝑣(𝑥,𝑦)+𝑝1𝑝𝐾1/𝑝,𝐾>0.(2.66) Combining (2.65) and (2.66), it follows that𝑣(𝑋,𝑦)𝑎(𝑋,𝑦)+𝜇+𝑦𝑦0𝑋𝑥0𝐿1𝑠,𝑡,𝑝𝐾(1𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝1𝑝𝐾1/𝑝+Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝜉,𝜂)+𝑝𝑞𝑝𝐾𝑞/𝑝+Δ𝜉Δ𝜂Δ𝑠Δ𝑡=𝑎(𝑋,𝑦)+𝜇𝑦𝑦0𝑋𝑥0𝐿1𝑠,𝑡,𝑝𝐾(1𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝1𝑝𝐾1/𝑝𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝜉,𝜂)+𝑝𝑞𝑝𝐾𝑞/𝑝+Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑎(𝑋,𝑦)+𝜇𝑦𝑦0𝑋𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝𝑣(𝑠,𝑡)+𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝+Δ𝜉Δ𝜂𝑣(𝑋,𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑝𝑞𝑝𝐾𝑞/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑎(𝑋,𝑦)+𝜇+𝑦𝑦0𝑋𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝+Δ𝑠𝑣(𝑋,𝑡)Δ𝑡𝑦𝑦0𝑋𝑥0𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+Δ𝑠Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝+Δ𝜉Δ𝜂Δ𝑠𝑣(𝑋,𝑡)Δ𝑡𝑦𝑦0𝑋𝑥0𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑝𝑞𝑝𝐾𝑞/𝑝𝐵Δ𝜉Δ𝜂Δ𝑠Δ𝑡=𝜇+1(𝑋,𝑦)+𝑦𝑦0𝐵2(𝑋,𝑡)𝑣(𝑋,𝑡)Δ𝑡,(2.67) where 𝐵1𝐵(𝑥,𝑦),2(𝑥,𝑦) are defined in (2.56) and (2.57), respectively.
We notice the structure of (2.67) is similar to (2.19), so following in a same manner as in (2.19)–(2.21) we obtain𝑣(𝑥,𝑦)𝜇1+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2+𝐵(𝑥,𝑡)Δ𝑡1(𝑥,𝑦)+𝑦𝑦0𝑒𝐵2𝐵(𝑦,𝜎(𝑡))2𝐵(𝑥,𝑡)1𝐵(𝑥,𝑡)Δ𝑡=𝜇3𝐵(𝑥,𝑦)+4𝑥(𝑥,𝑦),(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,,𝑁(2.68) where 𝐵3𝐵(𝑥,𝑦),4(𝑥,𝑦) are defined in (2.58) and (2.59), respectively.
On the other hand, from (2.62), (2.64), and (2.66) we have 𝜇𝑁𝑦0𝑀𝑥0𝐿𝑠,𝑡,𝑣1/𝑝+𝑡𝑦0𝑠𝑥02(𝜉,𝜂)𝑣𝑞/𝑝(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐿1𝑠,𝑡,𝑝𝐾(1𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝1𝑝𝐾1/𝑝+𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝜉,𝜂)+𝑝𝑞𝑝𝐾𝑞/𝑝=Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐿1𝑠,𝑡,𝑝𝐾(1𝑝)/𝑝𝑣(𝑠,𝑡)+𝑝1𝑝𝐾1/𝑝𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝜉,𝜂)+𝑝𝑞𝑝𝐾𝑞/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝𝑣(𝑠,𝑡)+𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝜉,𝜂)+𝑝𝑞𝑝𝐾𝑞/𝑝=̂Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝜆+𝑁𝑦0𝑀𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝+𝑣(𝑠,𝑡)𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝑣(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(2.69) where ̂𝜆 is defined in (2.55). Then using (2.68) in (2.69) yieldŝ𝜇𝜆+𝑁𝑦0𝑀𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝𝐵𝜇3𝐵(𝑠,𝑡)+4+(𝑠,𝑡)Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝐵𝜇3𝐵(𝜉,𝜂)+4=̂(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝜆+𝜇𝑁𝑦0𝑀𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝𝐵3+(𝑠,𝑡)𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝐵3+(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐴𝑠,𝑡,𝑝1𝑝𝐾1/𝑝1𝑝𝐾(1𝑝)/𝑝𝐵4+(𝑠,𝑡)𝑡𝑦0𝑠𝑥02𝑞(𝜉,𝜂)𝑝𝐾(𝑞𝑝)/𝑝𝐵4=̂𝐵(𝜉,𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝜆+𝜇5+𝐵6,(2.70) which implies ̂𝐵𝜇𝜆+6𝐵15.(2.71) Combining (2.63), (2.68), and (2.71), we obtain the desired inequality (2.54).

Remark 2.12. The established above inequalities generalize many known results including both integral inequalities for continuous functions and discrete inequalities. For example, if we take 𝕋=,𝑝=𝑞=1,𝑔(𝑥,𝑦)=(𝑥,𝑦)0, then Theorem 2.4 reduces to [1, Theorem 2.2], which is one case of integral inequality for continuous function. If we take 𝕋=,(𝑥,𝑦)0,𝑎(𝑥,𝑦)𝐶, then Corollary 2.7 reduces to [2, Theorem 3 (c1)], which is another case of inequality for continuous function. If we take 𝕋=,𝑝=𝑞=1,𝑔1(𝑥,𝑦)=𝑔2(𝑥,𝑦)=𝑓2(𝑥,𝑦)=1(𝑥,𝑦)=2(𝑥,𝑦)0, then Theorem 2.10 reduces to [1, Theorem 2.2] with slight difference. If we take 𝕋=,𝑔1(𝑥,𝑦)=1(𝑥,𝑦)=𝑓2(𝑥,𝑦)=2(𝑥,𝑦)0,𝜏1(𝑥)=𝑥,𝜏2(𝑦)=𝑦, then Theorem 2.10 reduces to [3, Theorem 2.1], which is a discrete inequality.

Remark 2.13. Since 𝕋 is an arbitrary time scale, then if we take 𝕋 for some peculiar cases, such as 𝕋= or 𝕋=, we can deduce a series of corollaries according to Theorem 2.42.11. Due to the limited space, we omit them here.

3. Some Applications

In this section, we will present some applications for the results we have established previously. New explicit bounds for solutions of certain dynamic equations are derived in the first two examples, while the quantitative property of solutions is focused on in the final example.

Example 3.1. Consider the following delay dynamic differential equation: (𝑢𝑝(𝑥,𝑦))ΔΔ𝑦𝑥𝜏=𝐹𝑠,𝑡,𝑢1(𝑠),𝜏2,(𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂,(𝑥,𝑦)𝕋0×𝕋0,(3.1) with the initial condition 𝑢𝑝𝑥0,𝑦Δ𝑦=𝑏Δ(𝑦),𝑢𝑝𝑥,𝑦0=𝑎(𝑥),𝑢(𝑥,𝑦)=𝜙(𝑥,𝑦),if𝑥𝛼,𝑥0𝕋,or𝑦𝛽,𝑦0||𝜙𝜏𝕋,1(𝑥),𝜏2||||||(𝑦)𝑘(𝑥,𝑦)1/𝑝,if𝜏1(𝑥)𝑥0,or𝜏2(𝑦)𝑦0,(𝑥,𝑦)𝕋0×𝕋0,(3.2) where 𝑢𝐶rd(𝕋0×𝕋0,), 𝑎𝐶rd(𝕋0,), 𝑏𝐶rd(𝕋0,), 𝑏 is delta differential, and 𝑏(𝑦0)=0,𝑘𝐶rd(𝕋0×𝕋0,+), 𝑝>0 is a constant, 𝜙𝐶rd(([𝛼,𝑥0]×[𝛽,𝑦0𝕋])2,),𝐹(𝕋0×𝕋0×2,),𝑊(𝕋0×𝕋0×,). 𝛼,𝛽,𝜏1,𝜏2 are the same as in Theorem 2.4.

Theorem 3.2. Suppose that 𝑢(𝑥,𝑦) is a solution of (3.1)-(3.2), |𝑎(𝑥)+𝑏(𝑦)|𝑘(𝑥,𝑦), and |𝐹(𝑠,𝑡,𝑥,𝑦)|𝑓(𝑠,𝑡)|𝑥|𝑞+|𝑦|, |𝑊(𝜉,𝜂,𝑥)|(𝜉,𝜂)|𝑥|𝑚, where 𝑓,,𝑞,𝑚 are defined as in Theorem 2.4; then ||||𝐵𝑢(𝑥,𝑦)1(𝑥,𝑦)+𝑦𝑦0𝑒𝐵2(𝑦,𝜎(𝑡))𝐵2(𝑥,𝑡)𝐵1(𝑥,𝑡)Δ𝑡1/𝑝,(𝑥,𝑦)𝕋0×𝕋0,(3.3) where 𝐵1(𝑥,𝑦)=𝑘(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0𝑓(𝑠,𝑡)𝑝𝑞𝑝𝐾𝑞/𝑝+𝑡𝑦0𝑠𝑥0(𝜉,𝜂)𝑝𝑚𝑝𝐾𝑚/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡,𝐾>0,(3.4) and 𝐵2(𝑥,𝑦) is defined as in Theorem 2.4 (with 𝑔(𝑥,𝑦)0).

Proof. The equivalent integral equation of (3.1) can be denoted by𝑢𝑝(+𝑥,𝑦)=𝑎(𝑥)+𝑏(𝑦)𝑦𝑦0𝑥𝑥0𝐹𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2,(𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(3.5) Then ||𝑢𝑝||(𝑥,𝑦)𝑘(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0||||𝐹𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2,(𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2||||+(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑘(𝑥,𝑦)𝑦𝑦0𝑥𝑥0||𝑢𝜏𝑓(𝑠,𝑡)1(𝑠),𝜏2||(𝑡)𝑞+||||𝑡𝑦0𝑠𝑥0𝑊𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2||||(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑘(𝑥,𝑦)+𝑦𝑦0𝑥𝑥0||𝑢𝜏𝑓(𝑠,𝑡)1(𝑠),𝜏2||(𝑡)𝑞+𝑡𝑦0𝑠𝑥0||𝑢𝜏(𝜉,𝜂)1(𝜉),𝜏2||(𝜂)𝑚Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(3.6) and a suitable application of Theorem 2.4 to (3.6) yields the desired inequality (3.3).

Theorem 3.3. Under the conditions of Theorem 3.2, one has ||||𝐵𝑢(𝑥,𝑦)1(𝑥,𝑦)𝑒𝐵2𝑦,𝑦01/𝑝,(𝑥,𝑦)𝕋0×𝕋0,(3.7) where 𝐵1,𝐵2 are defined as in Theorem 3.2.

Proof. The desired inequality can be obtained by an application of Theorem 2.5 to (3.6).

Example 3.4. Consider the following delay dynamic integral equation: 𝑢𝑝(𝑥,𝑦)=𝐶+𝑦𝑦0𝑥𝑥0𝐹1𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2(,𝑡)𝑡𝑦0𝑠𝑥0𝑊1𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2(+𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐹2𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2,(𝑡)𝑡𝑦0𝑠𝑥0𝑊2𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2𝑥(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,,𝑁(3.8) with the initial condition 𝑢(𝑥,𝑦)=𝜙(𝑥,𝑦),if𝑥𝛼,𝑥0𝕋,or𝑦𝛽,𝑦0||𝜙𝜏𝕋,1(𝑥),𝜏2||||𝐶||(𝑦)1/𝑝,if𝜏1(𝑥)𝑥0,or𝜏2(𝑦)𝑦0,(𝑥,𝑦)𝕋0×𝕋0,(3.9) where 𝑢𝐶rd(𝕋0×𝕋0,), 𝑝>0 is a constant, 𝐶=𝑢𝑝(𝑥0,𝑦0), 𝑀𝕋0𝕋,𝑁0 are two fixed numbers. 𝜙𝐶rd(([𝛼,𝑥0]×[𝛽,𝑦0𝕋])2,),𝐹𝑖(𝕋0×𝕋0×2,),𝑊𝑖(𝕋0×𝕋0×,),𝑖=1,2. 𝛼,𝛽,𝜏1,𝜏2 are the same as in Theorem 2.4.

Theorem 3.5. Suppose 𝑢(𝑥,𝑦) is a solution of (3.8)-(3.9) and |𝐹𝑖(𝑠,𝑡,𝑥,𝑦)|𝐿(𝑠,𝑡,|𝑥|)+|𝑦|,|𝑊𝑖(𝜉,𝜂,𝑥)|𝑖(𝜉,𝜂)|𝑥|𝑞,𝑖=1,2, where 𝐿,𝑖,𝑖=1,2,𝑞 are defined the same as in Theorem 2.11; then the following inequality holds: ||||̂𝐵𝑢(𝑥,𝑦)𝜆+6𝐵15𝐵3𝐵(𝑥,𝑦)+4(𝑥,𝑦)1/𝑝x,(𝑥,𝑦)0𝕋×𝑦,𝑀0𝕋,,𝑁(3.10) provided that 𝐵5<1, where ̂𝐵𝜆,2𝐵(𝑥,𝑦),3𝐵(𝑥,𝑦),4𝐵(𝑥,𝑦),5,𝐵6 are defined the same as in Theorem 2.11, and 𝐵1(||𝐶||+𝑥,𝑦)=𝑦𝑦0𝑥𝑥0𝐿𝑠,𝑡,𝑝1𝑝𝐾1/𝑝+𝑡𝑦0𝑠𝑥01(𝜉,𝜂)𝑝𝑞𝑝𝐾𝑞/𝑝Δ𝜉Δ𝜂Δ𝑠Δ𝑡,𝐾>0.(3.11)

Proof. From (3.8) we have ||𝑢𝑝||||𝐶||+(𝑥,𝑦)𝑦𝑦0𝑥𝑥0||||𝐹1𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2,(𝑡)𝑡𝑦0𝑠𝑥0𝑊1𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2||||+(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0||||𝐹2𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2,(𝑡)𝑡𝑦0𝑠𝑥0𝑊2𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2||||||𝐶||+(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝐿||𝑢𝜏𝑠,𝑡,1(𝑠),𝜏2||+||||(𝑡)𝑡𝑦0𝑠𝑥0𝑊1𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2||||+(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐿||𝑢𝜏𝑠,𝑡,1(𝑠),𝜏2||+||||(𝑡)𝑡𝑦0𝑠𝑥0𝑊2𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2||||||𝐶||+(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝐿||𝑢𝜏𝑠,𝑡,1(𝑠),𝜏2||+(𝑡)𝑡𝑦0𝑠𝑥01||𝑢𝜏(𝜉,𝜂)1(𝜉),𝜏2||(𝜂)𝑞+Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑁𝑦0𝑀𝑥0𝐿||𝑢𝜏𝑠,𝑡,1(𝑠),𝜏2||+(𝑡)𝑡𝑦0𝑠𝑥02||𝑢𝜏(𝜉,𝜂)1(𝜉),𝜏2||(𝜂)𝑞Δ𝜉Δ𝜂Δ𝑠Δ𝑡.(3.12) So by use of Theorem 2.11 we obtain the desired inequality (3.10).

Example 3.6. Consider the following delay dynamic integral equation: 𝑢(𝑥,𝑦)=𝐶+𝑦𝑦0𝑥𝑥0𝐹𝜏𝑠,𝑡,𝑢1(𝑠),𝜏2(,𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜏𝜉,𝜂,𝑢1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,(3.13) where 𝑢𝐶rd(𝕋0×𝕋0,), 𝐶=𝑢𝑝(𝑥0,𝑦0),𝐹(𝕋0×𝕋0×2,),𝑊(𝕋0×𝕋0×,). 𝜏1,𝜏2 are the same as in Theorem 2.4.

Theorem 3.7. Assume that |𝐹(𝑠,𝑡,𝑢1,𝑣1)𝐹(𝑠,𝑡,𝑢2,𝑣2)|𝑓(𝑠,𝑡)|𝑢1𝑢2|+|𝑣1𝑣2|,|𝑊(𝑠,𝑡,𝑢1)𝑊(𝑠,𝑡,𝑢2)|(𝑠,𝑡)|𝑢1𝑢2|, where 𝑓, are defined as in Theorem 2.4, and; furthermore, assume that 𝜏1(𝑥)𝑥0,𝜏2(𝑦)𝑦0, then (3.13) has at most one solution.

Proof. Suppose that 𝑢1(𝑥,𝑦),𝑢2(𝑥,𝑦) are two solutions of (3.13); then we have ||𝑢1(𝑥,𝑦)𝑢2||||||(𝑥,𝑦)𝑦𝑦0𝑥𝑥0𝐹𝑠,𝑡,𝑢1𝜏1(𝑠),𝜏2(𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜉,𝜂,𝑢1𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂𝐹𝑠,𝑡,𝑢2𝜏1(𝑠),𝜏2(𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜉,𝜂,𝑢2𝜏1(𝜉),𝜏2||||(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0||||𝐹𝑠,𝑡,𝑢1𝜏1(𝑠),𝜏2(𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜉,𝜂,𝑢1𝜏1(𝜉),𝜏2(𝜂)Δ𝜉Δ𝜂𝐹𝑠,𝑡,𝑢2𝜏1(𝑠),𝜏2(𝑡)𝑡𝑦0𝑠𝑥0𝑊𝜉,𝜂,𝑢2𝜏1(𝜉),𝜏2||||(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0||𝑢𝑓(𝑠,𝑡)1𝜏1(𝑠),𝜏2(𝑡)𝑢2𝜏1(𝑠),𝜏2||+(𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥0||𝑊𝜉,𝜂,𝑢1𝜏1(𝜉),𝜏2(𝜂)𝑊𝜉,𝜂,𝑢2𝜏1(𝜉),𝜏2||(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0||𝑢𝑓(𝑠,𝑡)1𝜏1(𝑠),𝜏2(𝑡)𝑢2𝜏1(𝑠),𝜏2||+(𝑡)Δ𝑠Δ𝑡𝑦𝑦0𝑥𝑥0𝑡𝑦0𝑠𝑥0||𝑢(𝜉,𝜂)1𝜏1(𝜉),𝜏2(𝜂)𝑢2𝜏1(𝜉),𝜏2||(𝜂)Δ𝜉Δ𝜂Δ𝑠Δ𝑡,.(3.14) Then a suitable application of Theorem 2.8 yields |𝑢1(𝑥,𝑦)𝑢2(𝑥,𝑦)|0, that is, 𝑢1(𝑥,𝑦)𝑢2(𝑥,𝑦), and the proof is complete.

4. Conclusions

In this paper, we established some new Gronwall-Bellman type integral inequalities on time scales. As one can see, the presented results provide a handy tool in the quantitative as well as qualitative analysis of solutions of certain delay dynamic equations on time scales. The established inequalities unify some known continuous and discrete inequalities.

Acknowledgments

This work is supported by Natural Science Foundation of Shandong Province (ZR2009AM011) China and Specialized Research Fund for the Doctoral Program of Higher Education (20103705110003) China. The authors thank the referees very much for their careful comments and valuable suggestions on this paper.