Abstract

Global well-posedness is proved for a family of 𝑛-dimensional MHD-alpha-like models.

1. Introduction

In this paper, we consider a family of MHD-alpha-like models:πœ•π‘‘π‘£+(βˆ’Ξ”)πœƒ2ξ‚€1𝑣+π‘’β‹…βˆ‡π‘’+βˆ‡π‘+2𝑏2ξ‚πœ•=π‘β‹…βˆ‡π‘,(1.1)𝑑𝐻+(βˆ’Ξ”)πœƒ2𝐻+π‘’β‹…βˆ‡π‘βˆ’π‘β‹…βˆ‡π‘’=0,(1.2)𝑣=1+βˆ’π›Ό2Ξ”ξ€Έπœƒ1𝑒,𝐻=1+βˆ’π›Ό2π‘€Ξ”ξ€Έπœƒ1𝑏,𝛼>0,𝛼𝑀𝑣>0,(1.3)div𝑣=div𝑒=div𝐻=div𝑏=0,(1.4)(𝑣,𝐻)(0)=0,𝐻0ξ€Έinℝ𝑛(𝑛β‰₯3),(1.5) where 𝑣 is the fluid velocity field, 𝑒 is the β€œfiltered” fluid velocity, 𝑝 is the pressure, 𝐻 is the magnetic field, and 𝑏 is the β€œfiltered” magnetic field. 𝛼>0 and 𝛼𝑀>0 are the length scales and for simplicity we will take 𝛼=𝛼𝑀=1. The parameter πœƒ1β‰₯0 affects the strength of the nonlinear term and πœƒ2β‰₯0 represents the degree of viscous dissipation satisfying3πœƒ1+2πœƒ2=𝑛+22.(1.6)

When πœƒ1=πœƒ2=1 and 𝑛=3, a global well-posedness is proved in [1]. The aim of this paper is to prove a global well-posedness theorem under (1.6). We will prove the following theorem.

Theorem 1.1. Let (𝑒0,𝑏0)βˆˆπ»π‘  with 𝑠β‰₯1, div𝑣0=div𝑒0=div𝐻0=div𝑏0=0 in ℝ𝑛, and (1.6) holding true. Then for any 𝑇>0, there exists a unique strong solution (𝑒,𝑏) satisfying (𝑒,𝑏)βˆˆπΏβˆžξ€·0,𝑇;𝐻𝑠+πœƒ1ξ€Έβˆ©πΏ2ξ€·0,𝑇;𝐻𝑠+πœƒ1+πœƒ2ξ€Έ.(1.7)

Remark 1.2. For studies on some standard MHD-𝛼 or Leray-𝛼 models, we refer to [2–7] and references therein.

2. Proof of Theorem 1.1

Since it is easy to prove that the problem (1.1)–(1.5) has a unique local smooth solution, we only need to establish the a priori estimates.

Testing (1.1) by 𝑒, using (1.3) and (1.4), and letting Ξ›βˆΆ=(βˆ’Ξ”)1/2, we see that12π‘‘ξ€œπ‘’π‘‘π‘‘2+||Ξ›πœƒ1𝑒||2ξ€œ||Λ𝑑π‘₯+πœƒ2𝑒||2+||Ξ›πœƒ1+πœƒ2𝑒||2ξ€œ(𝑑π‘₯=π‘β‹…βˆ‡)𝑏⋅𝑒𝑑π‘₯.(2.1)

Testing (1.2) by 𝑏 and using (1.3) and (1.4), we find that12π‘‘ξ€œπ‘π‘‘π‘‘2+||Ξ›πœƒ1𝑏||2ξ€œ||Λ𝑑π‘₯+πœƒ2𝑏||2+||Ξ›πœƒ1+πœƒ2𝑏||2ξ€œ(𝑑π‘₯=π‘β‹…βˆ‡)𝑒⋅𝑏𝑑π‘₯.(2.2)

Summing up (2.1) and (2.2), thanks to the cancellation of the right-hand side of (2.1) and (2.2), we infer that 12π‘‘ξ€œ(𝑑𝑑𝑒,𝑏)2+||Ξ›πœƒ1(||𝑒,𝑏)2ξ€œ||Λ𝑑π‘₯+πœƒ2(||𝑒,𝑏)2+||Ξ›πœƒ1+πœƒ2(||𝑒,𝑏)2𝑑π‘₯=0,(2.3) whenceβ€–(𝑒,𝑏)‖𝐿2(0,𝑇;π»πœƒ12+πœƒ)≀𝐢.(2.4)

Case 1. πœƒ1+πœƒ2>1.
In the following calculations, we will use the following commutator estimates due to Kato and Ponce [8]: ‖Λ𝑠(𝑓𝑔)βˆ’π‘“Ξ›π‘ π‘”β€–πΏπ‘ξ€·β‰€πΆβ€–βˆ‡π‘“β€–πΏπ‘1β€–β€–Ξ›π‘ βˆ’1π‘”β€–β€–πΏπ‘ž1+‖Λ𝑠𝑓‖𝐿𝑝2β€–π‘”β€–πΏπ‘ž2ξ€Έ,(2.5) with 𝑠>0 and 1/𝑝=1/𝑝1+1/π‘ž1=1/𝑝2+1/π‘ž2.We will also use the Sobolev inequality: β€–βˆ‡π‘’β€–πΏπ‘β€–β€–Ξ›β‰€πΆπœƒ1+πœƒ2𝑒‖‖𝐿2𝑛1βˆ’π‘=πœƒ1+πœƒ2βˆ’π‘›2ξ‚Ά,(2.6) and the Gagliardo-Nirenberg inequality: ‖Λ𝑠𝑒‖2𝐿2𝑝/π‘βˆ’1‖‖Λ≀𝐢𝑠+πœƒ1𝑒‖‖𝐿2β€–β€–Ξ›s+πœƒ1+πœƒ2𝑒‖‖𝐿2.(2.7)
Taking Λ𝑠 to (1.1), testing by Λ𝑠𝑒, and using (1.3) and (1.4), we infer that 12π‘‘ξ€œ||Λ𝑑𝑑𝑠𝑒||2+||Λ𝑠+πœƒ1𝑒||2ξ€œ||Λ𝑑π‘₯+𝑠+πœƒ2𝑒||2+||Λ𝑠+πœƒ1+πœƒ2𝑒||2ξ€œξ€ΊΞ›π‘‘π‘₯=βˆ’π‘ (π‘’β‹…βˆ‡π‘’)βˆ’π‘’β‹…βˆ‡Ξ›π‘ π‘’ξ€»Ξ›π‘ ξ€œξ€ΊΞ›π‘’π‘‘π‘₯+𝑠(π‘β‹…βˆ‡π‘)βˆ’π‘β‹…βˆ‡Ξ›π‘ π‘ξ€»Ξ›π‘ +ξ€œπ‘’π‘‘π‘₯π‘β‹…βˆ‡Ξ›π‘ π‘β‹…Ξ›π‘ π‘’π‘‘π‘₯.(2.8)
Taking Λ𝑠 to (1.2), testing by Λ𝑠𝑏, and using (1.3) and (1.4), we deduce that 12π‘‘ξ€œ||Λ𝑑𝑑𝑠𝑏||2+||Λ𝑠+πœƒ1𝑏||2ξ€œ||Λ𝑑π‘₯+𝑠+πœƒ2𝑏||2+||Λ𝑠+πœƒ1+πœƒ2𝑏||2ξ€œξ€ΊΞ›π‘‘π‘₯=βˆ’π‘ (π‘’β‹…βˆ‡π‘)βˆ’π‘’β‹…βˆ‡Ξ›π‘ π‘ξ€»Ξ›π‘ ξ€œξ€ΊΞ›π‘π‘‘π‘₯+𝑠(π‘β‹…βˆ‡π‘’)βˆ’π‘β‹…βˆ‡Ξ›π‘ π‘’ξ€»Ξ›π‘ +ξ€œπ‘π‘‘π‘₯π‘β‹…βˆ‡Ξ›π‘ π‘’β‹…Ξ›π‘ π‘π‘‘π‘₯.(2.9)
Summing up (2.8) and (2.9), thanks to the cancellation of the right-hand side of (2.8) and (2.9), and using (2.5), (2.6) and (2.7), we conclude that 12π‘‘ξ€œ||Λ𝑑𝑑𝑠(||𝑒,𝑏)2+||Λ𝑠+πœƒ1||(𝑒,𝑏)2ξ€œ||Λ𝑑π‘₯+𝑠+πœƒ2||(𝑒,𝑏)2+||Λ𝑠+πœƒ1+πœƒ2||(𝑒,𝑏)2𝑑π‘₯β‰€πΆβ€–βˆ‡π‘’β€–πΏπ‘β€–Ξ›π‘ π‘’β€–2𝐿2𝑝/π‘βˆ’1+πΆβ€–βˆ‡π‘β€–πΏπ‘β€–Ξ›π‘ π‘β€–πΏ2𝑝/π‘βˆ’1‖Λ𝑠𝑒‖𝐿2𝑝/π‘βˆ’1+πΆβ€–βˆ‡π‘’β€–πΏπ‘β€–Ξ›π‘ π‘β€–2𝐿2𝑝/π‘βˆ’1β€–β‰€πΆβ€–βˆ‡(𝑒,𝑏)𝐿𝑝‖Λ𝑠‖(𝑒,𝑏)2𝐿2𝑝/π‘βˆ’1β€–β€–Ξ›β‰€πΆπœƒ1+πœƒ2β€–β€–(𝑒,𝑏)𝐿2‖‖Λ𝑠+πœƒ1β€–β€–(𝑒,𝑏)𝐿2‖‖Λ𝑠+πœƒ1+πœƒ2β€–β€–(𝑒,𝑏)𝐿2≀12‖‖Λ𝑠+πœƒ1+πœƒ2β€–β€–(𝑒,𝑏)2𝐿2β€–β€–Ξ›+πΆπœƒ1+πœƒ2β€–β€–(𝑒,𝑏)2𝐿2‖‖Λ𝑠+πœƒ1β€–β€–(𝑒,𝑏)2𝐿2,(2.10) which implies (1.7).

Case 2. 0<πœƒ1+πœƒ2≀1 only when 𝑛=3.
Testing (1.1) by 𝑣, using (1.4), we see that 12π‘‘ξ€œπ‘£π‘‘π‘‘2ξ€œ||Λ𝑑π‘₯+πœƒ2𝑣||2ξ€œ(≀𝑑π‘₯=π‘β‹…βˆ‡π‘βˆ’π‘’β‹…βˆ‡π‘’)𝑣𝑑π‘₯‖𝑏‖𝐿𝑝1β€–βˆ‡π‘β€–πΏ112𝑝/π‘βˆ’2+‖𝑒‖𝐿𝑝1β€–βˆ‡π‘’β€–πΏ112𝑝/π‘βˆ’2‖𝑣‖𝐿2≀‖(𝑒,𝑏)‖𝐿𝑝1β€–βˆ‡(𝑒,𝑏)‖𝐿112𝑝/π‘βˆ’2‖𝑣‖𝐿2≀𝐢‖(𝑒,𝑏)β€–π»πœƒ12+πœƒβ€–β€–Ξ›πœƒ2β€–β€–(𝑣,𝐻)𝐿2‖𝑣‖𝐿2.(2.11) Here we have used the Sobolev inequalities β€–β€–(𝑒,𝑏)𝐿𝑝1‖‖≀𝐢(𝑒,𝑏)π»πœƒ12+πœƒξ‚΅βˆ’3𝑝1=πœƒ1+πœƒ2βˆ’32ξ‚Ά,β€–βˆ‡(𝑒,𝑏)‖𝐿112𝑝/π‘βˆ’2β€–β€–Ξ›β‰€πΆπœƒ2β€–β€–(𝑣,𝐻)𝐿23𝑝1βˆ’1ξ€Έβˆ’22𝑝1=πœƒ2+2πœƒ1βˆ’32ξƒͺ.(2.12) Similarly, testing (1.2) by 𝐻 and using (1.4) and (2.12), we find that 12π‘‘ξ€œπ»π‘‘π‘‘2ξ€œ||Λ𝑑π‘₯+πœƒ2𝐻||2ξ€œ(𝑑π‘₯=π‘β‹…βˆ‡π‘’βˆ’π‘’β‹…βˆ‡π‘)𝐻𝑑π‘₯≀‖(𝑒,𝑏)‖𝐿𝑝1β€–βˆ‡(𝑒,𝑏)‖𝐿112𝑝/π‘βˆ’2‖𝐻‖𝐿2≀𝐢‖(𝑒,𝑏)β€–π»πœƒ12+πœƒβ€–β€–Ξ›πœƒ2β€–β€–(𝑣,𝐻)𝐿2‖𝐻‖𝐿2.(2.13) Combining (2.11) and (2.13) and using (2.4) and the Gronwall inequality, we have β€–(𝑒,𝑏)‖𝐿2(0,𝑇;π»πœƒ21+2πœƒ)≀𝐢.(2.14) Similarly to (2.10), we have 12π‘‘ξ€œ||Λ𝑑𝑑𝑠(||𝑒,𝑏)2+||Λ𝑠+πœƒ1(||𝑒,𝑏)2ξ€œ||Λ𝑑π‘₯+𝑠+πœƒ2||(𝑒,𝑏)2+||Λ𝑠+πœƒ1+πœƒ2||(𝑒,𝑏)2‖𝑑π‘₯β‰€πΆβ€–βˆ‡(𝑒,𝑏)𝐿𝑝2‖Λ𝑠‖(𝑒,𝑏)2𝐿222𝑝/π‘βˆ’1≀𝐢‖(𝑒,𝑏)β€–π»πœƒ21+2πœƒβ€–β€–Ξ›π‘ +πœƒ1β€–β€–(𝑒,𝑏)2(1βˆ’π›Ό1)𝐿2‖‖Λ𝑠+πœƒ1+πœƒ2β€–β€–(𝑒,𝑏)2𝛼1𝐿2≀12‖‖Λ𝑠+πœƒ1+πœƒ2β€–β€–(𝑒,𝑏)2𝐿2+𝐢‖(𝑒,𝑏)β€–1/1βˆ’π›Ό1π»πœƒ21+2πœƒβ€–β€–Ξ›π‘ +πœƒ1β€–β€–(𝑒,𝑏)2𝐿2,(2.15) which implies (1.7) by 1/(1βˆ’π›Ό1)≀2. Here we have used the Sobolev inequality: β€–β€–βˆ‡(𝑒,𝑏)𝐿𝑝2‖‖≀𝐢(𝑒,𝑏)π»πœƒ21+2πœƒξ‚΅π‘›1βˆ’π‘2<πœƒ2+2πœƒ1βˆ’π‘›2ξ‚Ά(2.16) and the Gagliardo-Nirenberg inequality: ‖Λ𝑠‖(𝑒,𝑏)𝐿222𝑝/(π‘βˆ’1)‖‖Λ≀𝐢𝑠+πœƒ1β€–β€–(𝑒,𝑏)1βˆ’π›Ό1𝐿2‖‖Λ𝑠+πœƒ1+πœƒ2β€–β€–(𝑒,𝑏)𝛼1𝐿2,(2.17) with βˆ’((𝑝2βˆ’1)/2𝑝2)𝑛=𝛼1πœƒ2+πœƒ1βˆ’π‘›/2 and 𝑝2β‰₯2β‰₯3/(2πœƒ1+πœƒ2). This completes the proof.