Research Article  Open Access
Implementation of TAGE Method Using Seikkala Derivatives Applied to TwoPoint Fuzzy Boundary Value Problems
Abstract
Iterative methods particularly the TwoParameter Alternating Group Explicit (TAGE) methods are used to solve system of linear equations generated from the discretization of twopoint fuzzy boundary value problems (FBVPs). The formulation and implementation of the TAGE method are also presented. Then numerical experiments are carried out onto two example problems to verify the effectiveness of the method. The results show that TAGE method is superior compared to GS method in the aspect of number of iterations, execution time, and Hausdorff distance.
1. Introduction
Fuzzy boundary value problems (FBVPs) and treating fuzzy differential equations were one of the major applications for fuzzy number arithmetic [1]. FBVPs can be approached by two types. For instance, the first approach addresses problems in which the boundary values are fuzzy where the solution is still in fuzzy function. Then the second approach is based on generating the fuzzy solution from the crisp solution [2]. To solve these problems, numerical methods obtain their approximate solution. Consequently, in this paper, let twopoint linear FBVPs be defined in general form as follows: where is a fuzzy function and , , and are continuous functions on , whereas, and are fuzzy numbers.
Based on the Seikkala derivative [3], (1) will be solved numerically by applying the secondorder central finite difference scheme to discretize the twopoint linear FBVPs into linear systems. Then the generated linear systems will be solved iteratively by using TwoParameter Alternating Group Explicit (TAGE) method [4, 5]. By considering the Group Explicit (GE) method for the numerical solution of parabolic and elliptic problems, Evans [6, 7] discovered Alternating Group Explicit method. Later, Sukon and Evans [5] expanded this approach to initiate the TAGE method thus proving that this method is superior compared to AGE method. From previous studies, findings of the papers related to the TAGE iterative method and its variants [8–13] have shown that TAGE method has been widely used to solve the nonfuzzy problems. Due to the efficiency of the methods, this paper extends the application of TAGE iterative method in solving fuzzy problems. Since the fuzzy linear systems will be constructed, the iterative method becomes the natural option to get a fuzzy numerical solution of the problem.
The outline of the paper is organized as follows. Section 2 will discuss the finite difference method based on the secondorder finite difference scheme in discretizing twopoint FBVPs, while Section 3 presents the formulation and implementation of the TAGE methods in solving linear systems generated from the secondorder finite difference scheme. Section 4 shows some numerical examples and conclusions are given in Section 5.
2. Finite Difference Approximation Equations
To be clear, let be a fuzzy subset of real numbers. It is characterized by the corresponding membership function evaluated at , writing as a number in . cut of , in which is denoted as a crisp number, can be written as in , for . The interval of the cut of fuzzy numbers will be written as , for all , since they were always closed and bounded [14]. Suppose is parametric form of fuzzy function . For arbitrary positive integer subdivide the interval , whereas for and .
Denote the value of and at the representative point by at . Thus, by using the secondorder central finite difference scheme, problem (1) can be developed aswhich giveBy using parametric form of fuzzy function, (1) can be written asSuppose that and for . ThenBy applying (2a) and (3a), (6a) will be reduced tofor . Meanwhile, by substituting (2b) and (3b) into (6b), we will haveThen, (7a) and (7b) can be rewritten as follows:respectively, for . Since both of (8a) and (8b) have the same form in terms of the equation, except that, based on the interval of the cuts, the differences are identified only in the upper and lower bounds, it can be rewritten asfor , where
Now, we can express the secondorder central finite difference approximation (9) in a matrix form aswithSince this study will deal with an application of the method, the computational method of it will be diagonally dominant matrix and positive definite matrix [15].
3. TwoParameter Alternating Group Explicit Iterative Method
Based on previous study conducted by Evans, clearly we can see that they have discussed theoretically how to compute the value of parameter given by Mohanty et al. [9–13]. In this paper, the optimum value of parameters and will be calculated by implementing several numerical experiments, so those optimum values will be found if the number of iterations is smaller.
Family of AGE can be considered efficient to twostep method to solve linear system. None of the researchers had been trying to apply this method in solving fuzzy problem generated from discretization of fuzzy partial difference equation. This paper will discuss the application of this iterative method which will solve the fuzzy linear system given by (1). Consider a class of methods mentioned in [4, 5] which is based on the splitting of the matrix into the sum of its constituent symmetric and positive definite matrices, as follows:where if is odd. Similarly, we define the following matrices:if is even, with . In this paper, we only consider that case is even.
Then (11) becomesThus, the explicit form of TAGE method can be written aswhere are the acceleration parameters, and a pair of and are invertible. From (17), therefore, the implementation of TAGE method is presented in Algorithm 1.
Algorithm 1 (TAGE method). (i)Initialize and .(ii)For , initialize parameters , , , , , , , and .(iii) First Sweep. For , compute(iv) Second Sweep. For , compute(v) Convergence Test. If the convergence criterion, that is, , is satisfied, go to Step (vi). Otherwise go back to Step (ii).(vi)Display approximate solutions.
4. Numerical Experiments
Two examples of FBVPs are considered to verify the effectiveness of GS, AGE, and TAGE methods. For comparison purposes, three parameters were observed that are number of iterations, execution time (in seconds), and Hausdorff distance (as mentioned in Definition 2). Based on these two problems, numerical results for GS, AGE, and TAGE methods have been recorded in Tables 1 to 5.





Definition 2 (see [16]). Given two minimum bounding rectangles and , a lower bound of the Hausdorff distance from the elements confined by to the elements confined by is defined as
Problem 1. Consider where with the boundary conditions and . The exact solutions forarerespectively.
Problem 2 (see [17]). Consider where with the boundary conditions and . The exact solutions forarerespectively.
5. Conclusions
In this paper, TAGE method was used to solve linear systems which arise from the discretization of twopoint FBVPs using the secondorder central finite difference scheme. The results show that TAGE method is more superior in terms of the number of iterations, execution time, and Hausdorff distance compared to the AGE and GS methods. Since TAGE is well suited for parallel computation, it can be considered as a main advantage because this method has groups of independent task which can be implemented simultaneously. It is hoped that the capability of the proposed method will be helpful for the further investigation in solving any multidimensional fuzzy partial differential equations [18]. Basically the results of this paper can be classified as one of fullsweep iteration. Apart from the concept of the fullsweep iteration, further investigation of halfsweep [19–24] and quartersweep [25–27] iterations can also be considered in order to speed up the convergence rate of the standard proposed iterative methods. Other than that, further study will be extended to solve nonlinear problem by combining NewtonRaphson method.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgment
This paper was funded by National Defence University of Malaysia.
References
 J. J. Buckley and T. Feuring, “Fuzzy differential equations,” Fuzzy Sets and Systems, vol. 110, no. 1, pp. 43–54, 2000. View at: Publisher Site  Google Scholar  MathSciNet
 N. Gasilov, S. E. Amrahov, and A. G. Fatullayev, “Linear differential equations with fuzzy boundary values,” in Proceedings of the 5th International Conference on Applied Information and Communication Technology, 2011. View at: Google Scholar
 S. Seikkala, “On the fuzzy initial value problem,” Fuzzy Sets and Systems, vol. 24, no. 3, pp. 319–330, 1987. View at: Publisher Site  Google Scholar  MathSciNet
 K. S. Sukon, “On two parameter alternating group explicit (TAGE) method for singular perturbation problems,” Parallel Algorithms and Applications, vol. 10, no. 12, pp. 71–77, 1996. View at: Publisher Site  Google Scholar
 K. S. Sukon and D. J. Evans, “Two parameter age (TAGE) method for the solution of a tradiagonal linear system of equations,” International Journal of Computer Mathematics, vol. 60, no. 34, pp. 265–278, 1996. View at: Publisher Site  Google Scholar
 D. J. Evans, “The alternating group explicit (AGE) matrix iterative method,” Applied Mathematical Modelling, vol. 11, no. 4, pp. 256–263, 1987. View at: Publisher Site  Google Scholar  MathSciNet
 D. J. Evans, Group Explicit Methods for the Numerical Solution of Partial Differential Equations, Gordon and Breach Science Publishers, 1997. View at: MathSciNet
 N. Jha and R. K. Mohanty, “TAGE iterative algorithm and nonpolynomial spline basis for the solution of nonlinear singular second order ordinary differential equations,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3289–3296, 2011. View at: Publisher Site  Google Scholar  MathSciNet
 R. K. Mohanty, M. K. Jain, and D. Dhall, “A cubic spline approximation and application of TAGE iterative method for the solution of two point boundary value problems with forcing function in integral form,” Applied Mathematical Modelling, vol. 35, no. 6, pp. 3036–3047, 2011. View at: Publisher Site  Google Scholar  MathSciNet
 R. K. Mohanty and D. Dhall, “Third order accurate variable mesh discretization and application of TAGE iterative method for the nonlinear twopoint boundary value problems with homogeneous functions in integral form,” Applied Mathematics and Computation, vol. 215, no. 6, pp. 2024–2034, 2009. View at: Publisher Site  Google Scholar  MathSciNet
 R. K. Mohanty and N. Khosla, “Application of TAGE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for twopoint nonlinear boundary value problems,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 148–162, 2006. View at: Publisher Site  Google Scholar  MathSciNet
 R. K. Mohanty, P. L. Sachdev, and N. Jha, “An An O(h^{4}) accurate cubic spline TAGE method for nonlinear singular two point boundary value problems,” Applied Mathematics and Computation, vol. 158, no. 3, pp. 853–868, 2004. View at: Publisher Site  Google Scholar  MathSciNet
 R. K. Mohanty, P. L. Sachdev, and N. Jha, “TAGE method for nonlinear singular two point boundary value problem using a fourth order difference scheme,” Neural, Parallel & Scientific Computations, vol. 11, no. 3, pp. 281–296, 2003. View at: Google Scholar  MathSciNet
 T. Allahviranloo, “Difference methods for fuzzy partial differential equations,” Computational Methods in Applied Mathematics, vol. 2, no. 3, pp. 233–242, 2002. View at: Publisher Site  Google Scholar  MathSciNet
 D. M. Young, “Seconddegree iterative methods for the solution of large linear systems,” Journal of Approximation Theory, vol. 5, pp. 137–148, 1972. View at: Publisher Site  Google Scholar  MathSciNet
 S. Nutanog, H. E. Jacox, and H. Samet, “An incremental Hausdorff distance calculation algorithm,” Proceedings of the VLDB Endowment, vol. 4, pp. 506–517, 2011. View at: Google Scholar
 A. Mohsen and M. ElGamel, “On the Galerkin and collocation methods for twopoint boundary value problems using sinc bases,” Computers & Mathematics with Applications, vol. 56, no. 4, pp. 930–941, 2008. View at: Publisher Site  Google Scholar  MathSciNet
 A. Farajzadeh, A. Hossein Pour, and M. Amini, “An explicit method for solving fuzzy partial differential equation,” International Mathematical Forum, vol. 5, no. 21–24, pp. 1025–1036, 2010. View at: Google Scholar  MathSciNet
 A. A. Dahalan, J. Sulaiman, and M. S. Muthuvalu, “Performance of HSAGE method with Seikkala derivative for 2D fuzzy Poisson equation,” Applied Mathematical Sciences, vol. 8, no. 17–20, pp. 885–899, 2014. View at: Publisher Site  Google Scholar  MathSciNet
 A. A. Dahalan, M. S. Muthuvalu, and J. Sulaiman, “Numerical solutions of twopoint fuzzy boundary value problem using halfsweep alternating group explicit method,” in International Conference on Mathematical Sciences and Statistics 2013, vol. 1557 of AIP Conference Proccedings, pp. 103–107, 2013. View at: Publisher Site  Google Scholar
 M. Sundaram Muthuvalu and J. Sulaiman, “Halfsweep geometric mean iterative method for the repeated Simpson solution of second kind linear Fredholm integral equations,” Proyecciones. Journal of Mathematics, vol. 31, no. 1, pp. 65–79, 2012. View at: Publisher Site  Google Scholar  MathSciNet
 M. S. Muthuvalu and J. Sulaiman, “Halfsweep arithmetic mean method with composite trapezoidal scheme for solving linear Fredholm integral equations,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5442–5448, 2011. View at: Publisher Site  Google Scholar  MathSciNet
 J. Sulaiman, M. Othman, and M. K. Hasan, “Halfsweep algebraic multigrid (HSAMG) method applied to diffusion equations,” in Modeling, Simulation and Optimization of Complex Processes, pp. 547–556, Springer, Berlin, Germany, 2008. View at: Publisher Site  Google Scholar  MathSciNet
 J. Sulaiman, M. K. Hasan, and M. Othman, “The halfsweep iterative alternating decomposition explicit (HSIADE) method for diffusion equation,” in Computational and Information Science, J. Zhang, J.H. He, and Y. Fu, Eds., vol. 3314 of Lecture Notes in Computer Science, pp. 57–63, Springer, Berlin, Germany, 2005. View at: Publisher Site  Google Scholar
 N. Jha, “The application of sixth order accurate parallel quarter sweep alternating group explicit algorithm for nonlinear boundary value problems with singularity,” in Proceedings of the International Conference on Methods and Models in Computer Science (ICM2CS '10), pp. 76–80, IEEE, 2010. View at: Google Scholar
 J. Sulaiman, M. Othman, and M. K. Hasan, “A new quartersweep arithmetic mean (QSAM) method to solve diffusion equations,” Chamchuri Journal of Mathematics, vol. 1, no. 2, pp. 89–99, 2009. View at: Google Scholar  MathSciNet
 J. Sulaiman, M. Othman, and M. K. Hasan, “Quartersweep iterative alternating decomposition explicit algorithm applied to diffusion equations,” International Journal of Computer Mathematics, vol. 81, no. 12, pp. 1559–1565, 2004. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
Copyright
Copyright © 2015 A. A. Dahalan and J. Sulaiman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.