Review Article

Exploring Seipin: From Biochemistry to Bioinformatics Predictions

Figure 3

Triacylglycerol synthesis and usual seipin localization. During triacylglycerol synthesis, glycerol-3-phosphate acyltransferases (GPATs) catalyze the acylation at sn-1 position of glycerol-3-phosphate (G3P) and origin lysophosphatidic acid (LPA). Then, 1-acyl-sn-glycerol-3-phosphate acyltransferases (AGPATs) catalyze the acylation at sn-2 of LPA and give rise to phosphatidic acid (PA). Later, phosphatidate phosphatases (PAPs), as lipin1, can remove the phosphate group from PA and produce diacylglycerol (DG). Finally, diacylglycerol o-acyltransferases (DGATs) catalyze the acylation at the sn-3 position and give rise to triacylglycerol (TG) [35, 36]. In the same context, seipin comes as an oligomeric endoplasmic reticulum (ER) transmembrane protein that acts in lipid droplet (LD) assembly. ER and LDs were found to be neighbors, and seipin is concentrated in the communication regions between them, enabling the transfer of lipids recently synthetized to nascent LDs [37ā€“39]. Pieces of the illustrations are from the SMART website [40].