TY - JOUR A2 - Bonafoni, Stefania AU - Li, Yuanzheng AU - Wang, Lan AU - Liu, Min AU - Zhao, Guosong AU - He, Tian AU - Mao, Qizheng PY - 2019 DA - 2019/07/21 TI - Associated Determinants of Surface Urban Heat Islands across 1449 Cities in China SP - 4892714 VL - 2019 AB - The thermal environment is closely related to human well-being. Determinants of surface urban heat islands (SUHIs) have been extensively studied. Nevertheless, some research fields remain blank or have conflicting findings, which need to be further addressed. Particularly, few studies focus on drivers of SUHIs in massive cities with different sizes under various contexts at large scales. Using multisource data, we explored 11 determinants of surface urban heat island intensity (SUHII) for 1449 cities in different ecological contexts throughout China in 2010, adopting the Spearman and partial correlation analysis and machine learning method. The main results were as follows: (1) Significant positive partial correlations existed between daytime SUHII and the differences in nighttime light intensity and built-up intensity between cities and their corresponding villages except in arid or semiarid western China. The differences in the enhanced vegetation index were generally partially negatively correlated with daytime and nighttime SUHII. The differences in white sky albedo were usually partially negatively correlated with nighttime SUHII. The mean air temperature was partially positively correlated with nighttime SUHII in 40% of cases. Only a few significant partial relationships existed between SUHII and urban area, total population, and differences in aerosol optical depth. The explanation rates during daytime were larger than during nighttime in 72% of cases. The largest and smallest rates occurred during summer days in humid cold northeastern China (63.84%) and in southern China (10.44%), respectively. (2) Both the daytime and nighttime SUHII could be well determined by drivers using the machine learning method. The RMSE ranged from 0.49°C to 1.54°C at a national scale. The simulation SUHII values were always significantly correlated with the actual SUHII values. The simulation accuracies were always higher during nighttime than daytime. The highest accuracies occurred in central-northern China and were lowest in western China during both daytime and nighttime. SN - 1687-9309 UR - https://doi.org/10.1155/2019/4892714 DO - 10.1155/2019/4892714 JF - Advances in Meteorology PB - Hindawi KW - ER -