Applied Computational Intelligence and Soft Computing
 Journal metrics
Acceptance rate20%
Submission to final decision55 days
Acceptance to publication45 days
CiteScore1.410
Impact Factor-
 Submit

Algo-Trading Strategy for Intraweek Foreign Exchange Speculation Based on Random Forest and Probit Regression

Read the full article

 Journal profile

Applied Computational Intelligence and Soft Computing provides a forum for research that connects the disciplines of computer science, engineering, and mathematics using the technologies of computational intelligence and soft computing.

 Editor spotlight

Applied Computational Intelligence and Soft Computing maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Learning Based Genetic Algorithm for Task Graph Scheduling

Nowadays, parallel and distributed based environments are used extensively; hence, for using these environments effectively, scheduling techniques are employed. The scheduling algorithm aims to minimize the makespan (i.e., completion time) of a parallel program. Due to the NP-hardness of the scheduling problem, in the literature, several genetic algorithms have been proposed to solve this problem, which are effective but are not efficient enough. An effective scheduling algorithm attempts to minimize the makespan and an efficient algorithm, in addition to that, tries to reduce the complexity of the optimization process. The majority of the existing scheduling algorithms utilize the effective scheduling algorithm, to search the solution space without considering how to reduce the complexity of the optimization process. This paper presents a learner genetic algorithm (denoted by LAGA) to address static scheduling for processors in homogenous computing systems. For this purpose, we proposed two learning criteria named Steepest Ascent Learning Criterion and Next Ascent Learning Criterion where we use the concepts of penalty and reward for learning. Hence, we can reach an efficient search method for solving scheduling problem, so that the speed of finding a scheduling improves sensibly and is prevented from trapping in local optimal. It also takes into consideration the reuse idle time criterion during the scheduling process to reduce the makespan. The results on some benchmarks demonstrate that the LAGA provides always better scheduling against existing well-known scheduling approaches.

Research Article

Application of Bat Algorithm for Transport Network Design Problem

The requirement of the road services and transportation network development planning came into existence with the development of civilization. In the modern urban transport scenario with the forever mounting amount of vehicles, it is very much essential to tackle network congestion and to minimize the travel time. This work is based on determining the optimal wait time at traffic signals for the microscopic discrete model. The problem is formulated as a bilevel model. The upper layer optimizes the travel time by reducing the wait time at traffic signal and the lower layer solves the stochastic user equilibrium. Soft computing techniques like Genetic Algorithms, Ant Colony Optimization, and many other biologically inspired techniques prove to give good results for bilevel problems. Here this work uses Bat Intelligence to solve the transport network design problem. The results are compared with the existing techniques.

Research Article

Simulink-Based Analysis for Coupled Metabolic Systems

Stability analysis and dynamic simulation are important for researchers to capture the performance and the properties of underling systems. S-systems have good potential for characterizing dynamic interactive behaviour of large scale metabolic and genetic systems. It is important to develop a platform to achieve timely dynamic behaviour of S-systems to various situations. In this study, we first set up the respective block diagrams of S-systems for module-based simulation. We then derive reasonable theorems to examine the stability of S-systems and find out what kinds of environmental situations will make systems stable. Three canonical systems are used to examine the results which are carried out in the Matlab/Simulink environments.

Research Article

Enhancement of Performance for Steam Turbine in Thermal Power Plants Using Artificial Neural Network and Electric Circuit Design

Design and implantation of electric circuit for enhanced performance of steam power plant and artificial neural networks technique are used to control turbine. Artificial neural networks technique is used to control a lot of industrial models practically. Artificial neural network has been applied to control the important variables of turbine in AL–Dura power plant in Baghdad such as pressure, temperature, speed, and humidity. In this study Simulink model was applied in MATLAB program (v 2014 a) by using artificial neural network (ANN). The method of controlling model is by using NARMA to generate data and train network. ANN is offline. ANN requires data to obtain results and for comparison with actual power plant. The values of the input variables have a large effect on the number of nodes and epochs and in hidden layer of the artificial neural network they also affect performance of ANN. The electric circuit of sensors consists of transformer, DC bridge, and voltage regulator. Comparing the results from modeling by ANN and electric circuit with experimental data reveals a good agreement and the maximum deviation between the experimental data and predicted results from ANN and circuit design is less than 1%. The novelty in this paper is applying NARMA controller for the purpose of enhancement of turbine performance.

Research Article

Power Supply Management for an Electric Vehicle Using Fuzzy Logic

The technology of power electronic systems has diversified into industrial, commercial, and residential areas. Developing a strategy to improve the performance of the electrical energy of an electric vehicle (EV) requires an analysis of the model that describes it. EVs are complex mechatronic systems described by nonlinear models and, therefore, its study is not an easy task. It can improve the performance of a battery bank by creating new batteries that allow for greater storage or by developing a management energy system. This article shows the development of a power supply management system based on fuzzy logic for an electric vehicle, in order to minimize the total energy consumption and optimize the battery bank. The experimental result is shown using the fuzzy controller under standard operating conditions. An increase in battery performance and overall performance of energy consumption is shown. Speed signals acquired show improvements in some dynamic, such as overshoot, settling time, and steady-state error parameters. It is shown that this fuzzy controller increases the overall energy efficiency of the vehicle.

Research Article

Development of Decision Support Model for Selecting a Maintenance Plan Using a Fuzzy MCDM Approach: A Theoretical Framework

In complex decision making, using multicriteria decision-making (MCDM) methodologies is the most scientific way to ensure an informed and justified decision between several alternatives. MCDMs have been used in different ways and with several applications that proved their efficiency in achieving this goal. In this research, the advantages and disadvantages of the different MCDM methodologies are studied, along with the different techniques implemented to increase their accuracy and precision. The main aim of the study is to develop a hybrid MCDM process that combines the strengths of several MCDM methods and apply it to choose the best fit maintenance policy/strategy for industrial application. Moreover, fuzzy linguistic terms are utilized in all of the used MCDM techniques in order to eliminate the uncertainty and ambiguity of the results. Through an extensive literature review performed on studies that have used MCDM methods in a hybrid context and using fuzzy linguistic terms, a model is developed to use fuzzy DEMATEL-AHP-TOPSIS hybrid technique. The model with its application is the first of its kind, which combines the strengths of fuzzy DEMATEL in establishing interrelationships between several criteria, as well as performing a pairwise comparison between the criteria for prioritization using the fuzzy AHP method. Thereafter, the alternatives are compared using fuzzy TOPSIS method by establishing negative and positive solutions and calculating the relative closeness for each of the alternatives. Furthermore, six main criteria, twenty criteria, and five alternatives are selected from the literature for the model application.

Applied Computational Intelligence and Soft Computing
 Journal metrics
Acceptance rate20%
Submission to final decision55 days
Acceptance to publication45 days
CiteScore1.410
Impact Factor-
 Submit

You are browsing a BETA version of Hindawi.com. Click here to switch back to the original design.