TY - JOUR A2 - Penta, Raimondo AU - Liu, Guomin AU - Wu, Xueqiao AU - Zou, Meng AU - Yan, Yuying AU - Li, Jianqiao PY - 2019 DA - 2019/10/23 TI - Experimental Study on Drag Reduction Characteristics of Bionic Earthworm Self-Lubrication Surface SP - 4984756 VL - 2019 AB - In the present study, a coupling bionic method is used to study the drag reduction characteristics of corrugated surface with lubrication. In order to test the drag reduction features, bionic specimen was prepared inspired by earthworm surface and lubrication. Based on the reverse engineering method, nonsmooth curve of earthworm surface was extracted and the bionic corrugated sample was designed, and the position of lubrication hole was established by experimental testing. The lubricating drag reduction performance, the influence of normal pressure, the forward velocity, and the flow rate of lubricating fluid on the forward resistance of the bionic specimens were analyzed through a single factor test by using the self-developed test equipment. The model between the forward resistance and the three factors was established through the ternary quadratic regression test. The results show that the drag reduction effect is obvious, the drag reduction rate is 22.65% to 34.89%, and the forward resistance decreases with the increase of the forward velocity, increases with the increase of the normal pressure, and decreases first and then becomes stable with the increase of flow rate of lubricating fluid. There are secondary effects on forward resistance by the three factors, and the influencing order is as follows: normal pressure>flow rate of lubricating fluid>forward velocity. SN - 1176-2322 UR - https://doi.org/10.1155/2019/4984756 DO - 10.1155/2019/4984756 JF - Applied Bionics and Biomechanics PB - Hindawi KW - ER -