Abstract

The purpose of this paper is to give some properties of several ๐‘ž-Bernstein-type polynomials to express the ๐‘ž-integral on [0, 1] in terms of ๐‘ž-beta and ๐‘ž-gamma functions. Finally, we derive some identities on the ๐‘ž-integral of the product of several ๐‘ž-Bernstein-type polynomials.

1. Introduction

Let ๐‘žโˆˆโ„ with 0โ‰ค๐‘ž<1. We assume that ๐‘ž-number is defined by [๐‘ฅ]๐‘ž=(1โˆ’๐‘ž๐‘ฅ)/(1โˆ’๐‘ž) and [0]๐‘ž=0. Note that lim๐‘žโ†’1[๐‘ฅ]๐‘ž=๐‘ฅ. The ๐‘ž-derivative of a map ๐‘“โˆถโ„โ†’โ„ at ๐‘ฅโˆˆโ„โงต{0} is given by๐ท๐‘ž๐‘‘(๐‘“)=๐‘ž๐‘“(๐‘ฅ)๐‘‘๐‘ž๐‘ฅ=๐‘“(๐‘ž๐‘ฅ)โˆ’๐‘“(๐‘ฅ)(๐‘žโˆ’1)๐‘ฅ(1.1) (see [1โ€“6]). For ๐‘›โˆˆโ„•, by (1.1), we get ๐ท๐‘›๐‘ž(๐‘ฅ๐‘›)=[๐‘›]๐‘ž[๐‘›โˆ’1]๐‘žโ‹ฏ[2]๐‘ž[1]๐‘ž=[๐‘›]1!. The ๐‘ž-binomial formula is given by(๐‘Ž+๐‘)๐‘›๐‘ž=๐‘›โˆ’1๎‘๐‘–=0๎€ท๐‘Ž+๐‘๐‘ž๐‘–๎€ธ=๐‘›๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘›๐‘™โŽžโŽŸโŽŸโŽ ๐‘ž๐‘ž๎‚€๐‘™2๎‚๐‘Ž๐‘›โˆ’๐‘™๐‘๐‘™(1.2) (see [2, 5, 7โ€“11]), where (๐‘›๐‘˜)๐‘ž=[๐‘›]๐‘ž!/[๐‘˜]๐‘ž![๐‘›โˆ’๐‘˜]๐‘ž!=[๐‘›]๐‘ž[๐‘›โˆ’1]๐‘žโ‹ฏ[๐‘›โˆ’๐‘˜+1]๐‘ž/[๐‘˜]๐‘ž!.

For ๐‘Ž,๐‘โˆˆโ„, the Jackson ๐‘ž-integral of ๐‘“โˆถโ„โ†’โ„ is defined by๎€œ๐‘๐‘Ž๐‘“(๐‘ฅ)๐‘‘๐‘ž๐‘ฅ=(1โˆ’๐‘ž)โˆž๎“๐‘›=0๐‘ž๐‘›(๐‘๐‘“(๐‘๐‘ž๐‘›)โˆ’๐‘Ž๐‘“(๐‘Ž๐‘ž๐‘›))(1.3) (see [1, 2, 5, 6, 9, 12, 13]). From (1.2), we note thatโŽ›โŽœโŽœโŽ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘›+1๐‘ž=โŽ›โŽœโŽœโŽ๐‘›โŽžโŽŸโŽŸโŽ ๐‘˜โˆ’1๐‘ž+๐‘ž๐‘˜โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž=๐‘ž๐‘›โˆ’๐‘˜โŽ›โŽœโŽœโŽ๐‘›โŽžโŽŸโŽŸโŽ ๐‘˜โˆ’1๐‘ž+โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž.(1.4) By (1.2) and (1.4), we get(1โˆ’๐‘)๐‘›๐‘ž=(๐‘โˆถ๐‘ž)๐‘›=๐‘›โˆ’1๎‘๐‘–=0๎€ท1โˆ’๐‘ž๐‘–๐‘๎€ธ=๐‘›๎“๐‘–=0โŽ›โŽœโŽœโŽ๐‘›๐‘–โŽžโŽŸโŽŸโŽ ๐‘ž๐‘ž๎‚€๐‘–2๎‚(โˆ’๐‘)๐‘–,1(1โˆ’๐‘)๐‘›๐‘ž=1(๐‘โˆถ๐‘ž)๐‘›=1โˆ๐‘›โˆ’1๐‘–=0(1โˆ’๐‘ž๐‘–=๐‘)โˆž๎“๐‘–=0โŽ›โŽœโŽœโŽ๐‘–โŽžโŽŸโŽŸโŽ ๐‘›+๐‘–โˆ’1๐‘ž๐‘๐‘–.(1.5) Let ๐ถ[0,1] denote the set of continuous function on [0,1]. For ๐‘“โˆˆ๐ถ[0,1], Bernstein introduced the following well-known linear operators (see [1, 4, 9, 11, 14]):๐”น๐‘›(๐‘“โˆฃ๐‘ฅ)=๐‘›๎“๐‘˜=0๐‘“๎‚€๐‘˜๐‘›๎‚โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ฅ๐‘˜(1โˆ’๐‘ฅ)๐‘›โˆ’๐‘˜=๐‘›๎“๐‘˜=0๐‘“๎‚€๐‘˜๐‘›๎‚๐ต๐‘˜,๐‘›(๐‘ฅ).(1.6) Here ๐”น๐‘›(๐‘“โˆฃ๐‘ฅ) is called Bernstein operator of order ๐‘› for ๐‘“. For ๐‘˜,๐‘›โˆˆโ„ค+(=โ„•โˆช{0}), the Bernstein polynomials of degree ๐‘› are defined by๐ต๐‘˜,๐‘›โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ฅ(๐‘ฅ)=๐‘˜(1โˆ’๐‘ฅ)๐‘›โˆ’๐‘˜(1.7) (see [1, 3, 4, 11โ€“14]). By the definition of Bernstein polynomials (see (1.6) and (1.7)), we can see that Bernstein basis is the probability mass function of binomial distribution. A Bernoulli trial involves performing an experiment once and noting whether a particular event ๐ด occurs. The outcome of Bernoulli trial is said to be โ€œsuccessโ€ if ๐ด occurs and a โ€œfailureโ€ otherwise. Let ๐‘˜ be the number of successes in ๐‘› independent Bernoulli trials, the probabilities of ๐‘˜ are given by the binomial probability law:๐‘๐‘›โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘(๐‘˜)=๐‘˜(1โˆ’๐‘)๐‘›โˆ’๐‘˜,for๐‘˜=0,1,โ€ฆ,๐‘›,(1.8) where ๐‘๐‘›(๐‘˜) is the probability of ๐‘˜ successes in ๐‘› trials. For example, a communication system transmits binary information over channel that introduces random bit errors with probability ๐œ‰=10โˆ’3. The transmitter transmits each information bit three times, an a decoder takes a majority vote of the received bits to decide on what the transmitted bit was. The receiver can correct a single error, but it will make the wrong decision if the channel introduces two or more errors. If we view each transmission as a Bernoulli trial in which a โ€œsuccessโ€ corresponds to the introduction of an error, then the probability of two or more errors in three Bernoulli trials isโŽ›โŽœโŽœโŽ32โŽžโŽŸโŽŸโŽ ๐‘(๐‘˜โ‰ฅ2)=(0.001)2โŽ›โŽœโŽœโŽ33โŽžโŽŸโŽŸโŽ (0.999)+(0.001)3๎€ทโ‰ˆ310โˆ’6๎€ธ,(1.9) see [9]. Based on the ๐‘ž-integers Phillips introduced the ๐‘ž-analogue of well-known Bernstein polynomials (see [4, 5, 9, 11, 15]). For ๐‘“โˆˆ๐ถ([0,1]), Phillips introduced the ๐‘ž-extension of (1.6) as follows:๐”น๐‘›,๐‘ž(๐‘“โˆฃ๐‘ฅ)=๐‘›๎“๐‘›=0๐‘“๎‚ต[๐‘˜]๐‘ž[๐‘›]๐‘ž๎‚ถโŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž(1โˆ’๐‘ฅ)๐‘ž๐‘›โˆ’๐‘˜=๐‘›๎“๐‘›=0๐‘“๎‚ต[๐‘˜]๐‘ž[๐‘›]๐‘ž๎‚ถ๐ต๐‘˜,๐‘›(๐‘ฅ,๐‘ž),for๐‘˜,๐‘›โˆˆโ„ค+(1.10) (see [4, 5, 9, 11, 15]). Here ๐”น๐‘›,๐‘ž(๐‘“โˆฃ๐‘ฅ) is called the ๐‘ž-Bernstein operator of order ๐‘› for ๐‘“. For ๐‘˜,๐‘›โˆˆโ„ค+, the ๐‘ž-Bernstein polynomial of degree ๐‘› is defined by๐ต๐‘˜,๐‘›โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ (๐‘ฅ,๐‘ž)=๐‘ž๐‘ฅ๐‘˜(1โˆ’๐‘ฅ)๐‘ž๐‘›โˆ’๐‘˜,where[].๐‘ฅโˆˆ0,1(1.11) Note that (1.11) is the ๐‘ž-extension of (1.7). That is, lim๐‘žโ†’1๐ต๐‘˜,๐‘›(๐‘ฅ,๐‘ž)=๐ต๐‘˜,๐‘›(๐‘ฅ). For example, ๐ต0,1(๐‘ฅ,๐‘ž)=1โˆ’๐‘ฅ, ๐ต1,1(๐‘ฅ,๐‘ž)=๐‘ฅ, and ๐ต0,2(๐‘ฅ,๐‘ž)=1โˆ’[2]๐‘ž๐‘ฅ+๐‘ž๐‘ฅ2,โ€ฆ. Also ๐ต๐‘˜,๐‘›(๐‘ฅ,๐‘ž)=0 for ๐‘˜>๐‘›, because (๐‘›๐‘˜)๐‘ž=0. For ๐‘›,๐‘˜โˆˆโ„ค+, its probabilities are given byโŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘(๐‘ฅ=๐‘˜)=๐‘ž๐‘ฅ๐‘˜(1โˆ’๐‘ฅ)๐‘ž๐‘›โˆ’๐‘˜,where[].๐‘ฅโˆˆ0,1(1.12) This distributions are studied by several authors and they have applications in physics as well as in approximation theory due to the ๐‘ž-Bernstein polynomials and the ๐‘ž-Bernstein operators (see [1โ€“16]). By the definition of the ๐‘ž-Bernstein polynomials, we easily see that the ๐‘ž-Bernstein basis is the probability mass function of ๐‘ž-binomial distribution. In this paper we use the two ๐‘ž-analogues of exponential function as follows:๐ธ๐‘ž(๐‘ฅ)=((1โˆ’๐‘ž)๐‘ฅโˆถ๐‘ž)โˆž=(1+(1โˆ’๐‘ž)๐‘ฅ)โˆž๐‘ž=โˆž๎“๐‘›=0๐‘ž๎€ท๐‘›2๎€ธ๐‘ฅ๐‘›[๐‘›]๐‘ž!,(1.13)๐‘’๐‘ž1(๐‘ฅ)=((1โˆ’๐‘ž)๐‘ฅโˆถ๐‘ž)โˆž=1(1+(1โˆ’๐‘ž)๐‘ฅ)โˆž๐‘ž=โˆž๎“๐‘›=0๐‘ฅ๐‘›[๐‘›]๐‘ž!,(1.14) (see [2โ€“4, 6, 10]). From (1.3), the improper ๐‘ž-integral is given by๎€œ0โˆž/๐ด๐‘“(๐‘ฅ)๐‘‘๐‘ž๎“๐‘ฅ=(1โˆ’๐‘ž)๐‘›โˆˆโ„ค๐‘ž๐‘›๐ด๐‘“๎‚ต๐‘ž๐‘›๐ด๎‚ถ(1.15) (see [6]), where the improper ๐‘ž-integral depends on ๐ด. The purpose of this paper is to give some properties of several ๐‘ž-Bernstein type polynomials to express the ๐‘ž-integral on [0,1] in terms of ๐‘ž-beta and ๐‘ž-gamma functions. Finally, we derive some identities on the ๐‘ž-integral of the product of several ๐‘ž-Bernstein type polynomials.

2. ๐‘ž-Integral Representation of ๐‘ž-Bernstein Polynomials

The gamma and beta functions are defined as the following definite integrals (๐›ผ>0,๐›ฝ>0):๎€œฮ“(๐›ผ)=โˆž0๐‘’โˆ’๐‘ก๐‘ก๐›ผโˆ’1๐‘‘๐‘ก,(2.1) (see [1โ€“11, 14โ€“16])๎€œ๐ต(๐›ผ,๐›ฝ)=10๐‘ก๐›ผโˆ’1(1โˆ’๐‘ก)๐›ฝโˆ’1๎€œ๐‘‘๐‘ก=โˆž0๐‘ก๐›ผโˆ’1(1+๐‘ก)๐›ผ+๐›ฝ๐‘‘๐‘ก.(2.2) From (2.1) and (2.2), we can derive the following equations:ฮ“(๐›ผ+1)=๐›ผฮ“(๐›ผ),๐ต(๐›ผ,๐›ฝ)=ฮ“(๐›ผ)ฮ“(๐›ฝ).ฮ“(๐›ผ+๐›ฝ)(2.3) As the ๐‘ž-extensions of (2.1) and (2.2), the ๐‘ž-gamma and ๐‘ž-beta functions are defined as the following ๐‘ž-integrals (๐›ผ>0,๐›ฝ>0):ฮ“๐‘ž๎€œ(๐›ผ)=01/(1โˆ’๐‘ž)๐‘ฅ๐›ผโˆ’1๐ธ๐‘ž(โˆ’๐‘ž๐‘ฅ)๐‘‘๐‘ž๐‘ฅ(2.4) (see [2โ€“6, 10]),๐ต๐‘ž๎€œ(๐›ผ,๐›ฝ)=10๐‘ฅ๐›ผโˆ’1(1โˆ’๐‘ž๐‘ฅ)๐‘ž๐›ฝโˆ’1๐‘‘๐‘ž๐‘ฅ(2.5) (see [2, 4, 6, 10]).

By (2.4) and (2.5), we obtain the following lemma.

Lemma 2.1 (see [2, 6]). (a)โ€‰โ€‰ฮ“๐‘ž can be equivalently expressed as ฮ“๐‘ž(๐›ผ)=(1โˆ’๐‘ž)๐‘ž๐›ผโˆ’1(1โˆ’๐‘ž)๐›ผโˆ’1,where๐›ผ>0.(2.6) In particular, one has ฮ“๐‘ž[๐›ผ](๐›ผ+1)=๐‘žฮ“๐‘ž(๐›ผ),for๐›ผ>0,ฮ“๐‘ž(1)=1.(2.7)(b) The ๐‘ž-gamma and ๐‘ž-beta functions are related to each other by the following two equations: ฮ“๐‘ž๐ต(๐›ผ)=๐‘ž(๐›ผ,โˆž)(1โˆ’๐‘ž)๐›ผ,๐ต๐‘žฮ“(๐›ผ,๐›ฝ)=๐‘ž(๐›ผ)ฮ“๐‘ž(๐›ฝ)ฮ“๐‘ž,(๐›ผ+๐›ฝ)where๐›ผ>0,๐›ฝ>0.(2.8)

Now one takes the ๐‘ž-integral for one ๐‘ž-Bernstein polynomial as follows: for ๐‘›,๐‘˜โˆˆโ„ค+, ๐‘žโˆ’๐‘˜๎€œ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐‘‘๐‘žโŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ฅ=๐‘ž๎€œ10๐‘ฅ๐‘˜(1โˆ’๐‘ž๐‘ฅ)๐‘ž๐‘›โˆ’๐‘˜๐‘‘๐‘ž๐‘ฅ=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐‘›โˆ’๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ ๐‘›โˆ’๐‘˜๐‘ž(โˆ’1)๐‘™๐‘ž๎‚€2๎‚๐‘™+1๎€œ10๐‘ฅ๐‘™+๐‘˜๐‘‘๐‘ž๐‘ฅ=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐‘›โˆ’๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ ๐‘›โˆ’๐‘˜๐‘ž(โˆ’1)๐‘›โˆ’๐‘˜โˆ’๐‘™๐‘ž๎‚€2๎‚๐‘›โˆ’๐‘˜โˆ’๐‘™+11[]๐‘›โˆ’๐‘™+1๐‘ž.(2.9) Therefore, by (2.9), one obtains the following proposition.

Proposition 2.2. For ๐‘›,๐‘˜โˆˆโ„ค+, one has ๎€œ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐‘‘๐‘ž๐‘ฅ=๐‘ž๐‘˜โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐‘›โˆ’๐‘˜๎“l=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ ๐‘›โˆ’๐‘˜๐‘ž(โˆ’1)๐‘›โˆ’๐‘˜โˆ’๐‘™๐‘ž๎‚€2๎‚๐‘›โˆ’๐‘˜โˆ’๐‘™+11[]๐‘›โˆ’๐‘™+1๐‘ž.(2.10)

The Proposition 2.2 is closely related to the ๐‘ž-beta function which is given by๐ต๐‘ž๎€œ(๐‘›,๐‘š)=10๐‘ฅ๐‘›โˆ’1(1โˆ’๐‘ž๐‘ฅ)๐‘ž๐‘šโˆ’1๐‘‘๐‘ž๐‘ฅ,(2.11)ฮ“๐‘ž๎€œ(๐‘š)=01/(1โˆ’๐‘ž)๐‘ฅ๐‘›โˆ’1๐ธ๐‘ž(โˆ’๐‘ž๐‘ฅ)๐‘‘๐‘ž๐‘ฅ,(2.12) (see (2.5)). From Lemma 2.1, one has๐ต๐‘žฮ“(๐‘›,๐‘š)=๐‘ž(๐‘š)ฮ“๐‘ž(๐‘›)ฮ“๐‘ž,(๐‘›+๐‘š)where๐‘š,๐‘›โˆˆโ„•.(2.13) By (2.9) and (2.13), one gets๐‘žโˆ’๐‘˜๎€œ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐‘‘๐‘žโŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ฅ=๐‘ž๐ต๐‘ž=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ (๐‘˜+1,๐‘›โˆ’๐‘˜+1)๐‘žฮ“๐‘ž(๐‘˜+1)ฮ“๐‘ž(๐‘›โˆ’๐‘˜+1)ฮ“๐‘ž,(๐‘›+2)where๐‘˜>โˆ’1,๐‘›>๐‘˜โˆ’1.(2.14) Therefore, by (2.14), one obtains the following theorem.

Theorem 2.3. For ๐‘›,๐‘˜โˆˆโ„ค+ with ๐‘˜>โˆ’1 and ๐‘›>๐‘˜โˆ’1, one has ๎€œ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐‘‘๐‘žโŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ฅ=๐‘ž[๐‘˜]๐‘ž[]๐‘›โˆ’๐‘˜๐‘ž๎€ท[๐‘˜](๐‘žโˆ’1)๐‘ž๎€ธฮ“+1๐‘ž(๐‘˜)ฮ“๐‘ž(๐‘›โˆ’๐‘˜)ฮ“๐‘ž.(๐‘›+2)(2.15)

By comparing the coefficients on the both sides of Proposition 2.2 and Theorem 2.3, one obtains the following corollary.

Corollary 2.4. For ๐‘›,๐‘˜โˆˆโ„ค+ with ๐‘˜>โˆ’1 and ๐‘›>๐‘˜โˆ’1, one has ๐‘›โˆ’๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ ๐‘›โˆ’๐‘˜๐‘ž(โˆ’1)๐‘›โˆ’๐‘˜โˆ’๐‘™๐‘ž๎‚€2๎‚๐‘›โˆ’๐‘˜โˆ’๐‘™+1[]๐‘›โˆ’๐‘™+1๐‘ž=ฮ“๐‘ž(๐‘˜+1)ฮ“๐‘ž(๐‘›โˆ’๐‘˜+1)ฮ“๐‘ž.(๐‘›+2)(2.16)

According to this result one can say that the ๐‘ž-integral of ๐‘ž-Bernstein polynomials from 0 to 1 is symmetric. Now one considers the ๐‘ž-integral for the multiplication of two ๐‘ž-Bernstein polynomials which is given by the following relation:โˆซ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐ต๐‘˜,๐‘š(๐‘ž๐‘›โˆ’๐‘˜+1๐‘ฅ,๐‘ž)๐‘‘๐‘ž๐‘ฅ๐‘ž๐‘›๐‘˜โˆ’๐‘˜2+2๐‘˜=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๎€œ10๐‘ฅ2๐‘˜(1โˆ’๐‘ž๐‘ฅ)๐‘ž๐‘›+๐‘šโˆ’2๐‘˜๐‘‘q๐‘ฅ=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๎€œ10๐‘ข๐‘›+๐‘šโˆ’2๐‘˜(1โˆ’๐‘ž๐‘ข)๐‘ž2๐‘˜๐‘‘๐‘ž๐‘ข.(2.17) For ๐‘›,๐‘˜,๐‘šโˆˆโ„ค+, one can derive the following equation (2.20) from (2.17):โˆซ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐ต๐‘˜,๐‘š๎€ท๐‘ž๐‘›โˆ’๐‘˜+1๎€ธ๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ๐‘ž๐‘›๐‘˜โˆ’๐‘˜2+2๐‘˜=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž2๐‘˜๎“๐‘™=0๎€ท๐‘™2๐‘˜๎€ธ๐‘ž(โˆ’1)๐‘™๐‘ž๎‚€2๎‚๐‘™+1[]๐‘›+๐‘š+๐‘™โˆ’2๐‘˜+1๐‘ž=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž2๐‘˜๎“๐‘™=0๎€ท๐‘™2๐‘˜๎€ธ๐‘ž(โˆ’1)2๐‘˜โˆ’๐‘™๐‘ž๎‚€2๎‚2๐‘˜โˆ’๐‘™+1[]๐‘›+๐‘šโˆ’๐‘™+1๐‘ž.(2.18) Therefore, one obtains the following theorem.

Theorem 2.5. For ๐‘š,๐‘›,๐‘˜โˆˆโ„ค+, one has ๎€œ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐ต๐‘˜,๐‘š๎€ท๐‘ž๐‘›โˆ’๐‘˜+1๎€ธ๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ=๐‘ž๐‘›๐‘˜โˆ’๐‘˜2+2๐‘˜โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž2๐‘˜๎“๐‘™=0๎€ท๐‘™2๐‘˜๎€ธ๐‘ž(โˆ’1)2๐‘˜โˆ’๐‘™๐‘ž๎‚€2๎‚2๐‘˜โˆ’๐‘™+1[]๐‘›+๐‘šโˆ’๐‘™+1๐‘ž.(2.19)

For ๐‘š,๐‘›,๐‘˜โˆˆโ„ค+, by (2.5) and (2.9), one getsโˆซ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐ต๐‘˜,๐‘š๎€ท๐‘ž๐‘›โˆ’๐‘˜+1๎€ธ๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ๐‘ž๐‘›๐‘˜โˆ’๐‘˜2+2๐‘˜=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐ต๐‘ž(๐‘›+๐‘šโˆ’2๐‘˜+1,2๐‘˜+1).(2.20) Therefore, by Theorem 2.5 and (2.20), one obtains the following corollary.

Corollary 2.6. For ๐‘˜>โˆ’1 and ๐‘›+๐‘šโˆ’2๐‘˜>โˆ’1, one has 2๐‘˜๎“๐‘™=0๎€ท๐‘™2๐‘˜๎€ธ๐‘ž(โˆ’1)2๐‘˜โˆ’๐‘™๐‘ž๎‚€2๎‚2๐‘˜โˆ’๐‘™+1[]๐‘›+๐‘šโˆ’๐‘™+1๐‘ž=ฮ“๐‘ž(๐‘›+๐‘šโˆ’2๐‘˜+1)ฮ“๐‘ž(2๐‘˜+1)ฮ“๐‘ž.(๐‘›+๐‘š+2)(2.21)

By the same method, the multiplication of three ๐‘ž-Bernstein polynomials is given by the following relation: for ๐‘˜,๐‘›,๐‘š,๐‘ โˆˆโ„ค+,โˆซ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐ต๐‘˜,๐‘š๎€ท๐‘ž๐‘›โˆ’๐‘˜+1๎€ธ๐ต๐‘ฅ,๐‘ž๐‘˜,๐‘ ๎€ท๐‘ž๐‘›+๐‘šโˆ’2๐‘˜+1๎€ธ๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ๐‘ž3๐‘˜+2๐‘›๐‘˜โˆ’3๐‘˜2+๐‘š๐‘˜=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๎€œ10๐‘ฅ3๐‘˜(1โˆ’๐‘ž๐‘ฅ)๐‘ž๐‘›+๐‘š+๐‘ โˆ’3๐‘˜๐‘‘๐‘ž๐‘ฅ=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๎€œ10๐‘ข๐‘›+๐‘š+๐‘ โˆ’3๐‘˜(1โˆ’๐‘ž๐‘ข)๐‘ž3๐‘˜๐‘‘๐‘ž๐‘ข=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž3๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ 3๐‘˜๐‘ž๐‘ž๎‚€2๎‚๐‘™+1(โˆ’1)๐‘™๎€œ10๐‘ข๐‘›+๐‘š+๐‘ โˆ’3๐‘˜+๐‘™๐‘‘๐‘ž๐‘ข=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž3๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ 3๐‘˜๐‘ž๐‘ž๎‚€2๎‚3๐‘˜โˆ’๐‘™+1(โˆ’1)๐‘™+3๐‘˜1[]๐‘›+๐‘š+๐‘ โˆ’๐‘™+1๐‘ž.(2.22) Therefore, by (2.22), one obtains the following theorem.

Theorem 2.7. For ๐‘›,๐‘š,๐‘ ,๐‘˜โˆˆโ„ค+, one has ๎€œ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐ต๐‘˜,๐‘š๎€ท๐‘ž๐‘›โˆ’๐‘˜+1๎€ธ๐ต๐‘ฅ,๐‘ž๐‘˜,๐‘ ๎€ท๐‘ž๐‘›+๐‘šโˆ’2๐‘˜+1๎€ธ๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ=๐‘ž3๐‘˜+2๐‘›๐‘˜โˆ’3๐‘˜2+๐‘š๐‘˜โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž3๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ 3๐‘˜๐‘ž๐‘ž๎‚€2๎‚3๐‘˜โˆ’๐‘™+1(โˆ’1)๐‘™+3๐‘˜[]๐‘›+๐‘š+๐‘ โˆ’๐‘™+1๐‘ž.(2.23)

From (2.5) and (2.22), one hasโˆซ10๐ต๐‘˜,๐‘›(๐‘ž๐‘ฅ,๐‘ž)๐ต๐‘˜,๐‘š๎€ท๐‘ž๐‘›โˆ’๐‘˜+1๎€ธ๐ต๐‘ฅ,๐‘ž๐‘˜,๐‘ ๎€ท๐‘ž๐‘›+๐‘šโˆ’2๐‘˜+1๎€ธ๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ๐‘ž3๐‘˜+2๐‘›๐‘˜โˆ’3๐‘˜2+๐‘š๐‘˜=โŽ›โŽœโŽœโŽ๐‘›๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘š๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐ต๐‘ž(๐‘›+๐‘š+๐‘ โˆ’3๐‘˜+1,3๐‘˜+1).(2.24) Therefore, by Theorem 2.7 and (2.24), one obtains the following corollary.

Corollary 2.8. For ๐‘˜>โˆ’1/3 and ๐‘›+๐‘š+๐‘ โˆ’3๐‘˜>โˆ’1, one has 3๐‘˜๎“๐‘˜=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ 3๐‘˜๐‘ž(โˆ’1)๐‘™+3๐‘˜๐‘ž๎‚€2๎‚3๐‘˜โˆ’๐‘™+1[]๐‘›+๐‘š+๐‘ โˆ’๐‘™+1๐‘ž=ฮ“๐‘ž(๐‘›+๐‘š+๐‘ โˆ’3๐‘˜+1)ฮ“๐‘ž(3๐‘˜+1)ฮ“๐‘ž.(๐‘›+๐‘š+๐‘ +2)(2.25)

For ๐‘ โˆˆโ„•, let ๐‘›1,๐‘›2,โ€ฆ,๐‘›๐‘ ,๐‘˜โˆˆโ„ค+. Then one hasโˆซ10๐ต๐‘˜,๐‘›1๎‚€โˆ(๐‘ž๐‘ฅ,๐‘ž)๐‘ โˆ’1๐‘–=1๐ต๐‘˜,๐‘›๐‘–+1๎‚€๐‘žโˆ‘๐‘–๐‘™=1๐‘›๐‘™โˆ’๐‘–๐‘˜+1๎‚๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ๎‚๐‘žโˆ‘๐‘ ๐‘˜+๐‘˜๐‘ โˆ’1๐‘–=1๐‘–๐‘›๐‘ โˆ’๐‘–โˆ’๐‘˜2๎€ท๐‘ 2๎€ธ=โŽ›โŽœโŽœโŽ๐‘›1๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘›2๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโ‹ฏโŽ›โŽœโŽœโŽ๐‘›๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๎€œ10๐‘ฅ๐‘ ๐‘˜(1โˆ’๐‘ž๐‘ฅ)๐‘›1+โ‹ฏ+๐‘›๐‘ ๐‘žโˆ’๐‘ ๐‘˜๐‘‘๐‘ž๐‘ฅ=โŽ›โŽœโŽœโŽ๐‘›1๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘›2๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโ‹ฏโŽ›โŽœโŽœโŽ๐‘›๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐‘ ๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ ๐‘ ๐‘˜๐‘ž(โˆ’1)๐‘™๐‘ž๎‚€2๎‚๐‘™+1๎€œ10๐‘ฅ๐‘›1+โ‹ฏ+๐‘›๐‘ โˆ’๐‘ ๐‘˜+๐‘™๐‘‘๐‘ž๐‘ฅ=โŽ›โŽœโŽœโŽ๐‘›1๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘›2๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโ‹ฏโŽ›โŽœโŽœโŽ๐‘›๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐‘ ๐‘˜๎“๐‘™=0โŽ›โŽœโŽœโŽ๐‘™โŽžโŽŸโŽŸโŽ ๐‘ ๐‘˜๐‘ž(โˆ’1)๐‘™+๐‘ ๐‘˜๐‘ž๎‚€2๎‚๐‘ ๐‘˜โˆ’๐‘™+1๎€บ๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ปโˆ’๐‘™+1๐‘ž.(2.26) Therefore, by (2.26), one obtains the following theorem.

Theorem 2.9. For ๐‘ โˆˆโ„•, let ๐‘›1,๐‘›2,โ€ฆ,๐‘›๐‘ ,๐‘˜โˆˆโ„ค+. Then one has ๎€œ10๐ต๐‘˜,๐‘›1๎ƒฉ(๐‘ž๐‘ฅ,๐‘ž)๐‘ โˆ’1๎‘๐‘–=1๐ต๐‘˜,๐‘›๐‘–+1๎‚€๐‘žโˆ‘๐‘–๐‘™=1๐‘›๐‘™โˆ’๐‘–๐‘˜+1๎‚๎ƒช๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ=๐‘žโˆ‘๐‘ ๐‘˜+๐‘˜๐‘ โˆ’1๐‘–=1๐‘–๐‘›๐‘ โˆ’๐‘–โˆ’๐‘˜2๎€ท๐‘ 2๎€ธโŽ›โŽœโŽœโŽ๐‘›1๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโ‹ฏโŽ›โŽœโŽœโŽ๐‘›๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐‘ ๐‘˜๎“๐‘™=0๎€ท๐‘™๐‘ ๐‘˜๎€ธ๐‘ž(โˆ’1)๐‘™+๐‘ ๐‘˜๐‘ž๎‚€2๎‚๐‘ ๐‘˜โˆ’๐‘™+1๎€บ๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ปโˆ’๐‘™+1๐‘ž.(2.27)

By (2.5) and (2.26), we getโˆซ10๐ต๐‘˜,๐‘›1๎‚€โˆ(๐‘ž๐‘ฅ,๐‘ž)๐‘ โˆ’1๐‘–=1๐ต๐‘˜,๐‘›๐‘–+1๎‚€๐‘žโˆ‘๐‘–๐‘™=1๐‘›๐‘™โˆ’๐‘–๐‘˜+1๎‚๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ๎‚๐‘žโˆ‘๐‘ ๐‘˜+๐‘˜๐‘ โˆ’1๐‘–=1๐‘–๐‘›๐‘ โˆ’๐‘–โˆ’๐‘˜2๎€ท๐‘ 2๎€ธ=โŽ›โŽœโŽœโŽ๐‘›1๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘›2๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโ‹ฏโŽ›โŽœโŽœโŽ๐‘›๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘ž๐ต๐‘ž๎€ท๐‘ ๐‘˜+1,๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ธ=โŽ›โŽœโŽœโŽ๐‘›โˆ’๐‘ ๐‘˜+11๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโŽ›โŽœโŽœโŽ๐‘›2๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žโ‹ฏโŽ›โŽœโŽœโŽ๐‘›๐‘ ๐‘˜โŽžโŽŸโŽŸโŽ ๐‘žฮ“๐‘ž(๐‘ ๐‘˜+1)ฮ“๐‘ž๎€ท๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ธโˆ’๐‘ ๐‘˜+1ฮ“๐‘ž๎€ท๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ธ.+2(2.28) By comparing the coefficients on the both sides of Theorem 2.9 and (2.28), one obtains the following corollary.

Corollary 2.10. For ๐‘ โˆˆโ„•, let ๐‘˜>โˆ’1/๐‘  and ๐‘›1+โ‹ฏ+๐‘›๐‘ โˆ’๐‘ ๐‘˜>โˆ’1. Then one has ๐‘ ๐‘˜๎“๐‘™=0๎€ท๐‘™๐‘ ๐‘˜๎€ธ๐‘ž(โˆ’1)๐‘™+๐‘ ๐‘˜๐‘ž๎‚€2๎‚๐‘ ๐‘˜โˆ’๐‘™+1๎€บ๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ปโˆ’๐‘™+1๐‘ž=ฮ“๐‘ž(๐‘ ๐‘˜+1)ฮ“๐‘ž๎€ท๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ธโˆ’๐‘ ๐‘˜+1ฮ“๐‘ž๎€ท๐‘›1+โ‹ฏ+๐‘›๐‘ ๎€ธ.+2(2.29)

For ๐‘›โˆˆโ„ค+, one getsโˆซ10๐ต0,๐‘›๎‚ตโˆ(๐‘ž๐‘ฅ,๐‘ž)๐‘›๐‘™=1๐ต๐‘™,๐‘›๎‚ต๐‘ž๎‚€๐‘™2๎‚๐‘›๐‘™โˆ’+1๐‘‘๐‘ฅ,๐‘ž๎‚ถ๎‚ถ๐‘ž๐‘ฅ๐‘žโˆ‘๐‘›๐‘™=1๎‚€๐‘™2๎‚(๐‘›๐‘™โˆ’+1)๐‘™=โŽ›โŽœโŽœโŽœโŽ๐‘›๎‘๐‘–=0โŽ›โŽœโŽœโŽ๐‘›๐‘–โŽžโŽŸโŽŸโŽ ๐‘žโŽžโŽŸโŽŸโŽŸโŽ ๎€œ10๐‘ฅ๎‚€2๎‚๐‘›+1(1โˆ’๐‘ž๐‘ฅ)๎‚€2๎‚๐‘ž๐‘›+1๐‘‘๐‘ž๐‘ฅ=โŽ›โŽœโŽœโŽœโŽ๐‘›๎‘๐‘–=0โŽ›โŽœโŽœโŽ๐‘›๐‘–โŽžโŽŸโŽŸโŽ ๐‘žโŽžโŽŸโŽŸโŽŸโŽ ๐ต๐‘žโŽ›โŽœโŽœโŽโŽ›โŽœโŽœโŽ2โŽžโŽŸโŽŸโŽ โŽ›โŽœโŽœโŽ2โŽžโŽŸโŽŸโŽ โŽžโŽŸโŽŸโŽ =๎ƒฉ๎€ทฮ“๐‘›+1+1,๐‘›+1+1๐‘ž๎€ธ(๐‘›+1)๐‘›+1๎€ทโˆ๐‘›๐‘–=1ฮ“๐‘ž๎€ธ(๐‘–+1)2๎€ทฮ“๎ƒช๎ƒฉ๐‘ž๎€ธ(๐‘›(๐‘›+1)/2+1)2ฮ“๐‘ž๎ƒช.(๐‘›(๐‘›+1)+2)(2.30) Therefore, by (2.30), one obtains the following theorem.

Theorem 2.11. For ๐‘›โˆˆโ„ค+, one has ๎€œ10๐ต0,๐‘›๎ƒฉ(๐‘ž๐‘ฅ,๐‘ž)๐‘›๎‘๐‘™=1๐ต๐‘™,๐‘›๎‚ต๐‘ž๎‚€๐‘™2๎‚๐‘›๐‘™โˆ’+1๎‚ถ๎ƒช๐‘‘๐‘ฅ,๐‘ž๐‘ž๐‘ฅ=๐‘žโˆ‘๐‘›๐‘™=1๎‚€๐‘™2๎‚(๐‘›๐‘™โˆ’+1)๐‘™๎ƒฉ๎€ทฮ“๐‘ž๎€ธ(๐‘›+1)๐‘›+1๎€ทโˆ๐‘›๐‘–=1ฮ“๐‘ž๎€ธ(๐‘–+1)2๎€ทฮ“๎ƒช๎ƒฉ๐‘ž๎€ธ(๐‘›(๐‘›+1)/2+1)2ฮ“๐‘ž๎ƒช.(๐‘›(๐‘›+1)+2)(2.31)

From (2.30), one can also derive the following equation:โˆซ10๐ต0,๐‘›๎‚ตโˆ(๐‘ž๐‘ฅ,๐‘ž)๐‘›๐‘™=1๐ต๐‘™,๐‘›๎‚ต๐‘ž๎‚€๐‘™2๎‚๐‘›๐‘™โˆ’+1๐‘‘๐‘ฅ,๐‘ž๎‚ถ๎‚ถ๐‘ž๐‘ฅ๐‘žโˆ‘๐‘›๐‘™=1๎‚€๐‘™2๎‚(๐‘›๐‘™โˆ’+1)๐‘™=โŽ›โŽœโŽœโŽœโŽ๐‘›๎‘๐‘–=0โŽ›โŽœโŽœโŽ๐‘›๐‘–โŽžโŽŸโŽŸโŽ ๐‘žโŽžโŽŸโŽŸโŽŸโŽ (2๐‘›+1)๎“๐‘™=0โŽ›โŽœโŽœโŽœโŽœโŽโŽ›โŽœโŽœโŽ2โŽžโŽŸโŽŸโŽ ๐‘™โŽžโŽŸโŽŸโŽŸโŽŸโŽ ๐‘›+1๐‘ž(โˆ’1)๐‘™๐‘ž๎‚€2๎‚๐‘™+1๎€œ10๐‘ฅ๎‚€2๎‚๐‘›+1+๐‘™๐‘‘๐‘ž๐‘ฅ=โŽ›โŽœโŽœโŽœโŽ๐‘›๎‘๐‘–=0โŽ›โŽœโŽœโŽ๐‘›๐‘–โŽžโŽŸโŽŸโŽ ๐‘žโŽžโŽŸโŽŸโŽŸโŽ (2๐‘›+1)๎“๐‘™=0โŽ›โŽœโŽœโŽœโŽœโŽโŽ›โŽœโŽœโŽ2โŽžโŽŸโŽŸโŽ ๐‘™โŽžโŽŸโŽŸโŽŸโŽŸโŽ ๐‘›+1๐‘ž(โˆ’1)๐‘™๐‘ž๎‚€2๎‚๐‘™+11[]๐‘›(๐‘›+1)/2+๐‘™+1๐‘ž.(2.32) By comparing the coefficients on the both sides of Theorem 2.11 and (2.30), one can see that๐‘›(๐‘›+1)/2๎“๐‘™=0๎€ท๐‘™๐‘›(๐‘›+1)/2๎€ธ๐‘ž(โˆ’1)๐‘™๐‘ž๎‚€2๎‚๐‘™+1[]๐‘›(๐‘›+1)/2+๐‘™+1๐‘ž=๐ต๐‘ž๎‚ต๐‘›(๐‘›+1)2+1,๐‘›(๐‘›+1)2๎‚ถ.+1(2.33) Therefore, by (2.33), one obtains the following corollary.

Corollary 2.12. For ๐‘›โˆˆโ„ค+, one has ๐‘›(๐‘›+1)/2๎“๐‘™=0๎€ท๐‘™๐‘›(๐‘›+1)/2๎€ธ๐‘ž(โˆ’1)๐‘™๐‘ž๎‚€2๎‚๐‘™+1[]๐‘›(๐‘›+1)/2+๐‘™+1๐‘ž=๎ƒฉ๎€ทฮ“๐‘ž๎€ธ(๐‘›(๐‘›+1)/2+1)2ฮ“๐‘ž๎ƒช.(๐‘›(๐‘›+1)+2)(2.34)