Abstract

A rate of complete convergence for weighted sums of arrays of rowwise independent random variables was obtained by Sung and Volodin (2011). In this paper, we extend this result to negatively associated and negatively dependent random variables. Similar results for sequences of πœ‘-mixing and πœŒβˆ—-mixing random variables are also obtained. Our results improve and generalize the results of Baek et al. (2008), Kuczmaszewska (2009), and Wang et al. (2010).

1. Introduction

The concept of complete convergence of a sequence of random variables was introduced by Hsu and Robbins [1]. A sequence {𝑋𝑛,𝑛β‰₯1} of random variables converges completely to the constant πœƒ ifβˆžξ“π‘›=1𝑃||𝑋𝑛||ξ€Έβˆ’πœƒ>πœ–<βˆžβˆ€πœ–>0.(1.1) In view of the Borel-Cantelli lemma, this implies that π‘‹π‘›β†’πœƒ almost surely. Therefore, the complete convergence is a very important tool in establishing almost sure convergence of summation of random variables as well as weighted sums of random variables. Hsu and Robbins [1] proved that the sequence of arithmetic means of independent and identically distributed random variables converges completely to the expected value if the variance of the summands is finite. ErdΓΆs [2] proved the converse. The result of Hsu-Robbins-ErdΓΆs is a fundamental theorem in probability theory and has been generalized and extended in several directions by many authors.

Ahmed et al. [3] obtained complete convergence for weighted sums of arrays of rowwise independent Banach-space-valued random elements.

We recall that the array {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} of random variables is said to be stochastically dominated by a random variable 𝑋 if𝑃||𝑋𝑛𝑖||ξ€Έξ€·||𝑋||ξ€Έ>π‘₯≀𝐢𝑃>π‘₯βˆ€π‘₯>0,βˆ€π‘–β‰₯1,𝑛β‰₯1,(1.2) where 𝐢 is a positive constant.

Theorem 1.1 (Ahmed et al. [3]). Let {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} be an array of rowwise independent random elements which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be an array of constants satisfying sup𝑖β‰₯1||π‘Žπ‘›π‘–||=𝑂(π‘›βˆ’π›Ύ)forsome𝛾>0,(1.3)βˆžξ“π‘–=1||π‘Žπ‘›π‘–||=𝑂(𝑛𝛼)forsome𝛼<𝛾.(1.4) Suppose that there exists 𝛿>1 such that 1+𝛼/𝛾<𝛿≀2. Let π›½β‰ βˆ’1βˆ’π›Ό and 𝜈=max{1+(1+𝛼+𝛽)/𝛾,𝛿}. If 𝐸|𝑋|𝜈<∞ and βˆ‘βˆžπ‘–=1π‘Žπ‘›π‘–π‘‹π‘›π‘–β†’0 in probability, then βˆžξ“π‘›=1π‘›π›½π‘ƒξƒ©β€–β€–β€–β€–βˆžξ“π‘–=1π‘Žπ‘›π‘–π‘‹π‘›π‘–β€–β€–β€–β€–ξƒͺ>πœ–<βˆžβˆ€πœ–>0.(1.5)

Note that there was a typographical error in Ahmed et al. [3] (the relation 𝛿>0 should be 𝛿>1). If 𝛽<βˆ’1, then the conclusion of Theorem 1.1 is immediate. Hence, Theorem 1.1 is of interest only for 𝛽β‰₯βˆ’1.

Baek et al. [4] extended Theorem 1.1 to negatively associated random variables.

Theorem 1.2 (Baek et al. [4]). Let {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be an array of constants satisfying (1.3) and (1.4). Suppose that there exists 𝛿>0 such that 1+𝛼/𝛾<𝛿≀2. Let 𝛽β‰₯βˆ’1 and 𝜈=max{1+(1+𝛼+𝛽)/𝛾,𝛿}. If 𝐸𝑋𝑛𝑖=0, for all 𝑖β‰₯1 and 𝑛β‰₯1, and 𝐸||𝑋||||𝑋||𝐸||𝑋||log<∞,for1+𝛼+𝛽=0,𝜈<∞,for1+𝛼+𝛽>0,(1.6) then βˆžξ“π‘›=1π‘›π›½π‘ƒβŽ›βŽœβŽœβŽ|||||βˆžξ“π‘–=1π‘Žπ‘›π‘–π‘‹π‘›π‘–|||||⎞⎟⎟⎠>πœ–<βˆžβˆ€πœ–>0.(1.7)

Sung and Volodin [5] improved Theorem 1.1 as follows.

Theorem 1.3 (Sung and Volodin [5]). Suppose that 𝛽β‰₯βˆ’1. Let {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} be an array of rowwise independent random elements which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be an array of constants satisfying (1.3) and (1.4). Assume that βˆ‘βˆžπ‘–=1π‘Žπ‘›π‘–π‘‹π‘›π‘–β†’0 in probability. If 𝐸||𝑋||||𝑋||𝐸||𝑋||log<∞,for1+𝛼+𝛽=0,1+(1+𝛼+𝛽)/𝛾<∞,for1+𝛼+𝛽>0,(1.8) then (1.5) holds.

In this paper, we extend Theorem 1.3 to negatively associated and negatively dependent random variables. We also obtain similar results for sequences of πœ‘-mixing and πœŒβˆ—-mixing random variables. Our results improve and generalize the results of Baek et al. [4], Kuczmaszewska [6], and Wang et al. [7].

Throughout this paper, the symbol 𝐢 denotes a positive constant which is not necessarily the same one in each appearance. It proves convenient to define logπ‘₯=max{1,lnπ‘₯}, where lnπ‘₯ denotes the natural logarithm.

2. Preliminaries

In this section, we present some background materials which will be useful in the proofs of our main results.

The following lemma is well known, and its proof is standard.

Lemma 2.1. Let {𝑋𝑛,𝑛β‰₯1} be a sequence of random variables which are stochastically dominated by a random variable 𝑋. For any 𝛼>0 and 𝑏>0, the following statements hold:(i)𝐸|𝑋𝑛|𝛼𝐼(|𝑋𝑛|≀𝑏)≀𝐢{𝐸|𝑋|𝛼𝐼(|𝑋|≀𝑏)+𝑏𝛼𝑃(|𝑋|>𝑏)},(ii)𝐸|𝑋𝑛|𝛼𝐼(|𝑋𝑛|>𝑏)≀𝐢𝐸|𝑋|𝛼𝐼(|𝑋|>𝑏).

Lemma 2.2 (Sung [8]). Let 𝑋 be a random variable with 𝐸|𝑋|π‘Ÿ<∞ for some π‘Ÿ>0. For any 𝑑>0, the following statements hold:(i)βˆ‘βˆžπ‘›=1π‘›βˆ’1βˆ’π‘‘π›ΏπΈ|𝑋|π‘Ÿ+𝛿𝐼(|𝑋|≀𝑛𝑑)≀𝐢𝐸|𝑋|π‘Ÿ for any 𝛿>0,(ii)βˆ‘βˆžπ‘›=1π‘›βˆ’1+𝑑𝛿𝐸|𝑋|π‘Ÿβˆ’π›ΏπΌ(|𝑋|>𝑛𝑑)≀𝐢𝐸|𝑋|π‘Ÿ for any 𝛿>0 such that π‘Ÿβˆ’π›Ώ>0,(iii)βˆ‘βˆžπ‘›=1π‘›βˆ’1+π‘‘π‘Ÿπ‘ƒ(|𝑋|>𝑛𝑑)≀𝐢𝐸|𝑋|π‘Ÿ.

The Rosenthal-type inequality plays an important role in establishing complete convergence. The Rosenthal-type inequalities for sequences of dependent random variables have been established by many authors.

The concept of negatively associated random variables was introduced by Alam and Saxena [9] and carefully studied by Joag-Dev and Proschan [10]. A finite family of random variables {𝑋𝑖,1≀𝑖≀𝑛} is said to be negatively associated if for every pair of disjoint subsets 𝐴 and 𝐡 of {1,2,…,𝑛},𝑓Cov1𝑋𝑖,π‘–βˆˆπ΄,𝑓2𝑋𝑗,π‘—βˆˆπ΅ξ€Έξ€Έβ‰€0,(2.1) whenever 𝑓1 and 𝑓2 are coordinatewise increasing and the covariance exists. An infinite family of random variables is negatively associated if every finite subfamily is negatively associated.

The following lemma is a Rosenthal-type inequality for negatively associated random variables.

Lemma 2.3 (Shao [11]). Let {𝑋𝑛,𝑛β‰₯1} be a sequence of negatively associated random variables with 𝐸𝑋𝑛=0 and 𝐸|𝑋𝑛|π‘ž<∞ for some π‘žβ‰₯2 and all 𝑛β‰₯1. Then there exists a constant 𝐢>0 depending only on π‘ž such that πΈβŽ›βŽœβŽœβŽmax1≀𝑗≀𝑛|||||𝑗𝑖=1𝑋𝑖|||||π‘žβŽžβŽŸβŽŸβŽ βŽ§βŽͺ⎨βŽͺβŽ©β‰€πΆπ‘›ξ“π‘–=1𝐸||𝑋𝑖||π‘ž+𝑛𝑖=1𝐸𝑋2𝑖ξƒͺπ‘ž/2⎫βŽͺ⎬βŽͺ⎭.(2.2)

The concept of negatively dependent random variables was given by Lehmann [12]. A finite family of random variables {𝑋1,…,𝑋𝑛} is said to be negatively dependent (or negatively orthant dependent) if for each 𝑛β‰₯2, the following two inequalities hold:𝑃𝑋1≀π‘₯1,…,𝑋𝑛≀π‘₯𝑛≀𝑛𝑖=1𝑃𝑋𝑖≀π‘₯𝑖,𝑃𝑋1>π‘₯1,…,𝑋𝑛>π‘₯𝑛≀𝑛𝑖=1𝑃𝑋𝑖>π‘₯𝑖,(2.3) for all real numbers π‘₯1,…,π‘₯𝑛. An infinite family of random variables is negatively dependent if every finite subfamily is negatively dependent.

Obviously, negative association implies negative dependence, but the converse is not true.

The following lemma is a Rosenthal-type inequality for negatively dependent random variables.

Lemma 2.4 (Asadian et al. [13]). Let {𝑋𝑛,𝑛β‰₯1} be a sequence of negatively dependent random variables with 𝐸𝑋𝑛=0 and 𝐸|𝑋𝑛|π‘ž<∞ for some π‘žβ‰₯2 and all 𝑛β‰₯1. Then there exists a constant 𝐢>0 depending only on π‘ž such that 𝐸|||||𝑛𝑖=1𝑋𝑖|||||π‘žβŽ§βŽͺ⎨βŽͺβŽ©β‰€πΆπ‘›ξ“π‘–=1𝐸||𝑋𝑖||π‘ž+𝑛𝑖=1𝐸𝑋2𝑖ξƒͺπ‘ž/2⎫βŽͺ⎬βŽͺ⎭.(2.4)

For a sequence {𝑋𝑛,𝑛β‰₯1} of random variables defined on a probability space (Ξ©,β„±,𝑃), let β„±π‘šπ‘› denote the 𝜎-algebra generated by the random variables 𝑋𝑛,𝑋𝑛+1,…,π‘‹π‘š. Define the πœ‘-mixing coefficients byπœ‘(𝑛)=supπ‘˜β‰₯1ξ€½||𝑃||sup(𝐡∣𝐴)βˆ’π‘ƒ(𝐡),π΄βˆˆβ„±π‘˜1,𝑃(𝐴)β‰ 0,π΅βˆˆβ„±βˆžπ‘˜+𝑛.(2.5) The sequence {𝑋𝑛,𝑛β‰₯1} is called πœ‘-mixing (or πœ™-mixing) if πœ‘(𝑛)β†’0 as π‘›β†’βˆž.

For any π‘†βŠ‚β„•, let ℱ𝑆=𝜎(𝑋𝑖,π‘–βˆˆπ‘†). Define the πœŒβˆ—-mixing coefficients byπœŒβˆ—(𝑛)=supcorr(𝑓,𝑔),(2.6) where the supremum is taken over all 𝑆,π‘‡βŠ‚β„• with dist(𝑆,𝑇)β‰₯𝑛, and all π‘“βˆˆπΏ2(ℱ𝑆) and π‘”βˆˆπΏ2(ℱ𝑇). The sequence {𝑋𝑛,𝑛β‰₯1} is called πœŒβˆ—-mixing (or ΜƒπœŒ-mixing) if there exists π‘˜βˆˆβ„• such that πœŒβˆ—(π‘˜)<1.

Note that if {𝑋𝑛,𝑛β‰₯1} is a sequence of independent random variables, then πœ‘(𝑛)=0 and πœŒβˆ—(𝑛)=0 for all 𝑛β‰₯1.

The following lemma is a Rosenthal-type inequality for πœ‘-mixing random variables.

Lemma 2.5 (Wang et al. [7]). Let {𝑋𝑛,𝑛β‰₯1} be a sequence of πœ‘-mixing random variables with 𝐸𝑋𝑛=0 and 𝐸|𝑋𝑛|π‘ž<∞ for some π‘žβ‰₯2 and all 𝑛β‰₯1. Assume that βˆ‘βˆžπ‘›=1πœ‘1/2(𝑛)<∞. Then there exists a constant 𝐢>0 depending only on π‘ž and πœ‘(β‹…) such that πΈβŽ›βŽœβŽœβŽmax1≀𝑗≀𝑛|||||𝑗𝑖=1𝑋𝑖|||||π‘žβŽžβŽŸβŽŸβŽ βŽ§βŽͺ⎨βŽͺβŽ©β‰€πΆπ‘›ξ“π‘–=1𝐸||𝑋𝑖||π‘ž+𝑛𝑖=1𝐸𝑋2𝑖ξƒͺπ‘ž/2⎫βŽͺ⎬βŽͺ⎭.(2.7)

The following lemma is a Rosenthal-type inequality for πœŒβˆ—-mixing random variables.

Lemma 2.6 (Utev and Peligrad [14]). Let {𝑋𝑛,𝑛β‰₯1} be a sequence of random variables with 𝐸𝑋𝑛=0 and 𝐸|𝑋𝑛|π‘ž<∞ for some π‘žβ‰₯2 and all 𝑛β‰₯1. If πœŒβˆ—(π‘˜)<1 for some π‘˜, then there exists a constant 𝐢>0 depending only on π‘ž,π‘˜, and πœŒβˆ—(π‘˜) such that πΈβŽ›βŽœβŽœβŽmax1≀𝑗≀𝑛|||||𝑗𝑖=1𝑋𝑖|||||π‘žβŽžβŽŸβŽŸβŽ βŽ§βŽͺ⎨βŽͺβŽ©β‰€πΆπ‘›ξ“π‘–=1𝐸||𝑋𝑖||π‘ž+𝑛𝑖=1𝐸𝑋2𝑖ξƒͺπ‘ž/2⎫βŽͺ⎬βŽͺ⎭.(2.8)

3. Main Results

In this section, we extend Theorem 1.3 to negatively associated and negatively dependent random variables. We also obtain similar results for sequences of πœ‘-mixing and πœŒβˆ—-mixing random variables.

The following theorem extends Theorem 1.3 to negatively associated random variables.

Theorem 3.1. Suppose that 𝛽β‰₯βˆ’1. Let {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be an array of constants satisfying (1.3) and (1.4). If 𝐸𝑋𝑛𝑖=0 for all 𝑖β‰₯1 and 𝑛β‰₯1, and (1.8) holds, then βˆžξ“π‘›=1π‘›π›½π‘ƒβŽ›βŽœβŽœβŽsup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–π‘‹π‘›π‘–|||||⎞⎟⎟⎠>πœ–<βˆžβˆ€πœ–>0.(3.1)

Proof. Since π‘Žπ‘›π‘–=π‘Ž+π‘›π‘–βˆ’π‘Žβˆ’π‘›π‘–, we may assume that π‘Žπ‘›π‘–β‰₯0. For 𝑖β‰₯1 and 𝑛β‰₯1, define 𝑋𝑛𝑖′=𝑋𝑛𝑖𝐼||𝑋𝑛𝑖||≀𝑛𝛾+𝑛𝛾𝐼𝑋𝑛𝑖>π‘›π›Ύξ€Έβˆ’π‘›π›ΎπΌξ€·π‘‹π‘›π‘–<βˆ’π‘›π›Ύξ€Έ,π‘‹ξ…žξ…žπ‘›π‘–=π‘‹π‘›π‘–βˆ’π‘‹ξ…žπ‘›π‘–.(3.2) Then {π‘‹ξ…žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} is still an array of rowwise negatively associated random variables. Moreover, {π‘Žπ‘›π‘–π‘‹ξ…žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} is also an array of rowwise negatively associated random variables. Since 𝐸𝑋𝑛𝑖=0 for all 𝑖β‰₯1 and 𝑛β‰₯1, it suffices to show that 𝐼1=βˆΆβˆžξ“π‘›=1π‘›π›½π‘ƒβŽ›βŽœβŽœβŽsup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–ξ€·π‘‹π‘›π‘–β€²βˆ’πΈπ‘‹π‘›π‘–β€²ξ€Έ|||||⎞⎟⎟⎠𝐼>πœ–<∞,2=βˆΆβˆžξ“π‘›=1π‘›π›½π‘ƒβŽ›βŽœβŽœβŽsup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–ξ€·π‘‹ξ…žξ…žπ‘›π‘–βˆ’πΈπ‘‹ξ…žξ…žπ‘›π‘–ξ€Έ|||||⎞⎟⎟⎠>πœ–<∞.(3.3) We will prove (3.3) with three cases.
Case 1 (1+(1+𝛼+𝛽)/𝛾=1(i.e.,1+𝛼+𝛽=0)). For 𝐼1, we get by Markov’s inequality, Lemmas 2.1–2.3, (1.3), and (1.4) that 𝐼1β‰€πœ–βˆžβˆ’2𝑛=1𝑛𝛽𝐸sup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–(π‘‹π‘›π‘–β€²βˆ’πΈπ‘‹π‘›π‘–|||||β€²)2β‰€πΆβˆžξ“π‘›=1π‘›π›½βˆžξ“π‘–=1||π‘Žπ‘›π‘–||2𝐸||𝑋𝑛𝑖′||2(byLemma2.3)β‰€πΆβˆžξ“π‘›=1π‘›π›½βˆžξ“π‘–=1||π‘Žπ‘›π‘–||2𝐸||𝑋||2𝐼||𝑋||≀𝑛𝛾+𝑛2𝛾𝑃||𝑋||>𝑛𝛾(byLemma2.1)β‰€πΆβˆžξ“π‘›=1π‘›π›½π‘›βˆ’π›Ύπ‘›π›Όξ‚†πΈ||𝑋||2𝐼||𝑋||≀𝑛𝛾+𝑛2𝛾𝑃||𝑋||>𝑛𝛾||𝑋||(by(1.3)and(1.4))≀𝐢𝐸1+(1+𝛼+𝛽)/𝛾<∞.(3.4) The fifth inequality follows from Lemma 2.2.
For 𝐼2, we get by Markov’s inequality, stochastic domination, and (1.4) that 𝐼2β‰€πœ–βˆžβˆ’1𝑛=1𝑛𝛽𝐸sup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–ξ€·π‘‹ξ…žξ…žπ‘›π‘–βˆ’πΈπ‘‹ξ…žξ…žπ‘›π‘–ξ€Έ|||||≀2πœ–βˆžβˆ’1𝑛=1π‘›π›½βˆžξ“π‘–=1||π‘Žπ‘›π‘–||𝐸||π‘‹ξ…žξ…žπ‘›π‘–||β‰€πΆβˆžξ“π‘›=1π‘›π›½βˆžξ“π‘–=1||π‘Žπ‘›π‘–||𝐸||𝑋||𝐼||𝑋||>π‘›π›Ύξ€Έβ‰€πΆβˆžξ“π‘›=1𝑛𝛽𝑛𝛼𝐸||𝑋||𝐼||𝑋||>𝑛𝛾=πΆβˆžξ“π‘›=1π‘›βˆžβˆ’1𝑖=𝑛𝐸||𝑋||𝐼𝑖𝛾<||𝑋||≀(𝑖+1)𝛾=πΆβˆžξ“π‘–=1𝐸||𝑋||𝐼𝑖𝛾<||𝑋||≀(𝑖+1)𝛾𝑖𝑛=1π‘›βˆ’1||𝑋||||𝑋||≀𝐢𝐸log<∞.(3.5)
Case 2 (1<1+(1+𝛼+𝛽)/𝛾<2). As in Case 1, we have that 𝐼1≀𝐢𝐸|𝑋|1+(1+𝛼+𝛽)/𝛾<∞.
Similar to 𝐼2 in Case 1, we have that 𝐼2β‰€πΆβˆžξ“π‘›=1𝑛𝛼+𝛽𝐸||𝑋||𝐼||𝑋||>𝑛𝛾=πΆβˆžξ“π‘›=1π‘›βˆžπ›Ό+𝛽𝑖=𝑛𝐸||𝑋||𝐼𝑖𝛾<||𝑋||≀(𝑖+1)𝛾=πΆβˆžξ“π‘–=1𝐸||𝑋||𝐼𝑖𝛾<||𝑋||≀(𝑖+1)𝛾𝑖𝑛=1𝑛𝛼+𝛽||𝑋||≀𝐢𝐸1+(1+𝛼+𝛽)/𝛾<∞.(3.6)
Case 3 (1+(1+𝛼+𝛽)/𝛾β‰₯2). For 𝐼1, we take 𝑑>0 sufficiently large such that (π›Ύβˆ’π›Ό)(1+(1+𝛼+𝛽)/𝛾+𝑑)/2>1+𝛽. Then we obtain by Markov’s inequality and Lemma 2.3 that 𝐼1β‰€πœ–βˆžβˆ’1βˆ’(1+𝛼+𝛽)/π›Ύβˆ’π‘‘ξ“π‘›=1𝑛𝛽𝐸sup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–(π‘‹π‘›π‘–β€²βˆ’πΈπ‘‹π‘›π‘–|||||β€²)1+(1+𝛼+𝛽)/𝛾+π‘‘β‰€πΆβˆžξ“π‘›=1π‘›π›½βˆžξ“π‘–=1𝐸||π‘Žπ‘›π‘–π‘‹π‘›π‘–β€²||1+(1+𝛼+𝛽)/𝛾+𝑑+πΆβˆžξ“π‘›=1π‘›π›½ξƒ©βˆžξ“π‘–=1𝐸||π‘Žπ‘›π‘–π‘‹π‘›π‘–β€²||2ξƒͺ(1+(1+𝛼+𝛽)/𝛾+𝑑)/2=∢𝐼3+𝐼4.(3.7)Similar to 𝐼1 in Case 1, we obtain that 𝐼3β‰€πΆβˆžξ“π‘›=1π‘›π›½π‘›βˆ’π›Ύ((1+𝛼+𝛽)/𝛾+𝑑)𝑛𝛼𝐸||𝑋||1+(1+𝛼+𝛽)/𝛾+𝑑𝐼||𝑋||≀𝑛𝛾+𝑛𝛾(1+(1+𝛼+𝛽)/𝛾+𝑑)𝑃||𝑋||>𝑛𝛾=πΆβˆžξ“π‘›=1π‘›βˆ’1βˆ’π›Ύπ‘‘πΈ||𝑋||1+(1+𝛼+𝛽)/𝛾+𝑑𝐼||𝑋||≀𝑛𝛾+πΆβˆžξ“π‘›=1𝑛𝛼+𝛽+𝛾𝑃||𝑋||>𝑛𝛾||𝑋||≀𝐢𝐸1+(1+𝛼+𝛽)/𝛾<∞.(3.8)Noting 𝐸|𝑋𝑛𝑖′|2≀𝐢𝐸|𝑋|2, we obtain by (1.3) and (1.4) that 𝐼4β‰€πΆβˆžξ“π‘›=1𝑛𝛽||𝑋||𝐢𝐸2βˆžξ“π‘–=1||π‘Žπ‘›π‘–||2ξƒͺ(1+(1+𝛼+𝛽)/𝛾+𝑑)/2β‰€πΆβˆžξ“π‘›=1𝑛𝛽||𝑋||𝐢𝐸2π‘›π›Όβˆ’π›Ύξ‚(1+(1+𝛼+𝛽)/𝛾+𝑑)/2<∞,(3.9) since (π›Ύβˆ’π›Ό)(1+(1+𝛼+𝛽)/𝛾+𝑑)/2βˆ’π›½>1. Hence, 𝐼1<∞. As in Case 2, we obtain 𝐼2≀𝐢𝐸|𝑋|1+(1+𝛼+𝛽)/𝛾<∞.

Remark 3.2. The moment condition of Theorem 3.1 is weaker than that of Theorem 1.2. Also, the conclusion of Theorem 3.1 implies the conclusion of Theorem 1.2. Hence, Theorem 3.1 improves Theorem 1.2. Moreover, the method of the proof of Theorem 3.1 is simpler than that of the proof of Theorem 1.2.

Corollary 3.3. Let {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be a Toeplitz array satisfying sup𝑖β‰₯1||π‘Žπ‘›π‘–||𝑛=𝑂1/π‘‘βˆ’π›Ώξ€Έforsome𝑑>0,𝛿>0.(3.10) If 𝐸||𝑋||𝐸||𝑋||||𝑋||𝐸||𝑋||<∞,for0<𝑑<1,log<∞,fort=1,1+(1βˆ’1/𝑑)/𝛿<∞,fort>1,(3.11) then βˆžξ“π‘›=1π‘ƒβŽ›βŽœβŽœβŽmax1≀𝑗≀𝑛|||||𝑗𝑖=1π‘Žπ‘›π‘–π‘‹π‘›π‘–|||||>πœ–π‘›1/π‘‘βŽžβŽŸβŽŸβŽ <βˆžβˆ€πœ–>0.(3.12)

Proof. For the case 0<𝑑<1, the result can be easily proved by βˆžξ“π‘›=1π‘ƒβŽ›βŽœβŽœβŽmax1≀𝑗≀𝑛|||||𝑗𝑖=1π‘Žπ‘›π‘–π‘‹π‘›π‘–|||||>πœ–π‘›1/π‘‘βŽžβŽŸβŽŸβŽ β‰€πœ–βˆžβˆ’1𝑛=1π‘›βˆ’1/𝑑𝐸max1≀𝑗≀𝑛|||||𝑗𝑖=1π‘Žπ‘›π‘–π‘‹π‘›π‘–|||||β‰€πœ–βˆžβˆ’1𝑛=1π‘›π‘›βˆ’1/𝑑𝑖=1||π‘Žπ‘›π‘–||𝐸||𝑋𝑛𝑖||||𝑋||β‰€πΆπΈβˆžξ“π‘›=1π‘›βˆ’1/𝑑<∞.(3.13)
For the case 𝑑β‰₯1, we let 𝑏𝑛𝑖=π‘Žπ‘›π‘–π‘›βˆ’1/𝑑. Observe that sup𝑖β‰₯1||𝑏𝑛𝑖||𝑛=π‘‚βˆ’π›Ώξ€Έ,βˆžξ“π‘–=1||𝑏𝑛𝑖||𝑛=π‘‚βˆ’1/𝑑.(3.14)
By Theorem 3.1 with 𝛼=βˆ’1/𝑑,𝛽=0,𝛾=𝛿, and π‘Žπ‘›π‘– replaced by 𝑏𝑛𝑖, we get that βˆžξ“π‘›=1π‘ƒβŽ›βŽœβŽœβŽmax1≀𝑗≀𝑛|||||𝑗𝑖=1π‘π‘›π‘–ξ€·π‘‹π‘›π‘–βˆ’πΈπ‘‹π‘›π‘–ξ€Έ|||||⎞⎟⎟⎠>πœ–<βˆžβˆ€πœ–>0.(3.15) To complete the proof, we only prove that 𝐽=∢max1≀𝑗≀𝑛|||||𝑗𝑖=1𝑏𝑛𝑖𝐸𝑋𝑛𝑖|||||⟢0,(3.16) but βˆ‘π½β‰€π‘›π‘–=1|𝑏𝑛𝑖|𝐸|𝑋𝑛𝑖|≀𝐢𝐸|𝑋|π‘›βˆ’1/𝑑→0 as π‘›β†’βˆž.

Remark 3.4. When 0<𝑑<1, Corollary 3.3 holds without negative association. Kuczmaszewska [6, Corollary  2.4], proved Corollary 3.3 under the stronger moment condition 𝐸|𝑋|1+1/𝛿<∞.

The following theorem extends Theorem 1.3 to negatively dependent random variables.

Theorem 3.5. Suppose that 𝛽β‰₯βˆ’1. Let {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} be an array of rowwise negatively dependent random variables which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be an array of constants satisfying (1.3) and (1.4). If 𝐸𝑋𝑛𝑖=0 for all 𝑖β‰₯1 and 𝑛β‰₯1, and (1.8) holds, then (1.7) holds.

Proof. The proof is the same as that of Theorem 3.1 except that we use Lemma 2.4 instead of Lemma 2.3.

If the array {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} in Theorem 3.1 is replaced by the sequence {𝑋𝑛,𝑛β‰₯1}, then we can extend Theorem 3.1 to πœ‘-mixing and πœŒβˆ—-mixing random variables.

Theorem 3.6. Suppose that 𝛽β‰₯βˆ’1. Let {𝑋𝑛,𝑛β‰₯1} be a sequence of πœ‘-mixing random variables which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be an array of constants satisfying (1.3) and (1.4). Assume that βˆ‘βˆžπ‘›=1πœ‘1/2(𝑛)<∞. If 𝐸𝑋𝑛=0 for all 𝑛β‰₯1, and (1.8) holds, then βˆžξ“π‘›=1π‘›π›½π‘ƒβŽ›βŽœβŽœβŽsup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–π‘‹π‘–|||||⎞⎟⎟⎠>πœ–<βˆžβˆ€πœ–>0.(3.17)

Proof. Since 𝐸𝑋𝑛=0 for all 𝑛β‰₯1, it suffices to show that βˆžξ“π‘›=1π‘›π›½π‘ƒβŽ›βŽœβŽœβŽsup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–ξ€·π‘‹π‘–πΌξ€·||𝑋𝑖||β‰€π‘›π›Ύξ€Έβˆ’πΈπ‘‹π‘–πΌξ€·||𝑋𝑖||≀𝑛𝛾|||||βŽžβŽŸβŽŸβŽ ξ€Έξ€Έ>πœ–<∞,βˆžξ“π‘›=1π‘›π›½π‘ƒβŽ›βŽœβŽœβŽsup𝑗β‰₯1|||||𝑗𝑖=1π‘Žπ‘›π‘–ξ€·π‘‹π‘–πΌξ€·||𝑋𝑖||>π‘›π›Ύξ€Έβˆ’πΈπ‘‹π‘–πΌξ€·||𝑋𝑖||>𝑛𝛾|||||βŽžβŽŸβŽŸβŽ ξ€Έξ€Έ>πœ–<∞.(3.18) The rest of the proof is the same as that of Theorem 3.1 except that we use Lemma 2.5 instead of Lemma 2.3 and it is omitted.

Remark 3.7. Can Theorem 3.6 be extended to the array {𝑋𝑛𝑖,𝑖β‰₯1,𝑛β‰₯1} of rowwise πœ‘-mixing random variables? Let {πœ‘π‘›(𝑖),𝑖β‰₯1} be the sequence of πœ‘-mixing coefficients for the 𝑛th row {𝑋𝑛1,𝑋𝑛2,…} of the array {𝑋𝑛𝑖}. When we apply Lemma 2.5 to the 𝑛th row, the constant 𝐢 depends on both π‘ž and πœ‘π‘›(β‹…). That is, the constant 𝐢 depends on 𝑛. Hence we cannot extend Theorem 3.6 to the array by using the method of the proof of Theorem 3.1.

Corollary 3.8. Let {𝑋𝑛,𝑛β‰₯1} be a sequence of πœ‘-mixing random variables which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be a Toeplitz array satisfying (3.10). Assume that βˆ‘βˆžπ‘›=1πœ‘1/2(𝑛)<∞. If (3.11) holds, then βˆžξ“π‘›=1π‘ƒβŽ›βŽœβŽœβŽmax1≀𝑗≀𝑛|||||𝑗𝑖=1π‘Žπ‘›π‘–π‘‹π‘–|||||>πœ–π‘›1/π‘‘βŽžβŽŸβŽŸβŽ <βˆžβˆ€πœ–>0.(3.19)

Proof. The proof is the same as that of Corollary 3.3 except that we use Theorem 3.6 instead of Theorem 3.1.

Remark 3.9. When 0<𝑑<1, Corollary 3.8 holds without πœ‘-mixing. Wang et al. [7, Theorem  2.5] proved Corollary 3.8 under the stronger moment condition 𝐸|𝑋|max{2/𝛿,1+1/𝛿}<∞.

Theorem 3.10. Suppose that 𝛽β‰₯βˆ’1. Let {𝑋𝑛,𝑛β‰₯1} be a sequence of πœŒβˆ—-mixing random variables which are stochastically dominated by a random variable 𝑋. Let {π‘Žπ‘›π‘–,𝑖β‰₯1,𝑛β‰₯1} be an array of constants satisfying (1.3) and (1.4). If 𝐸𝑋𝑛=0 for all 𝑛β‰₯1, and (1.8) holds, then (3.17) holds.

Proof. The proof is the same as that of Theorem 3.6 except that we use Lemma 2.6 instead of Lemma 2.5.

Remark 3.11. Likewise in Remark 3.7, we also cannot extend Theorem 3.10 to the array by using the method of the proof of Theorem 3.1.

Acknowledgments

The author would like to thank the Editor Zhenya Yan and an anonymous referee for the helpful comments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0013131).