Abstract

This paper studies the second-order nonlinear neutral delay difference equation ?[?????(????+????????-??)+??(??,????1??,,????????)]+??(??,????1??,,????????)=????, ??=??0. By means of the Krasnoselskii and Schauder fixed point theorem and some new techniques, we get the existence results of uncountably many bounded nonoscillatory, positive, and negative solutions for the equation, respectively. Ten examples are given to illustrate the results presented in this paper.

1. Introduction

We are concerned with the second-order nonlinear neutral delay difference equation of the form ????????????+????????-????+????,????1??,,???????????+????,????1??,,?????????=????,??=??0,(1.1) where ??,???N, ??0?N0, {????}???N??0, {????}???N??0 and {????}???N??0 are real sequences with ?????0 for each ???N??0, ??,?????(N??0×R??,R), and ????,????:N??0?Z withlim???8??????=lim???8??????=+8,???{1,2,,??}.(1.2) Note that a few special cases of (1.1) were studied in [19]. In particular, González and Jiménez-Melado [3] used a fixed-point theorem derived from the theory of measures of noncompactness to investigate the existence of solutions for the second-order difference equation????????????+??????????=0,??=0.(1.3) By applying the Leray-Schauder nonlinear alternative theorem for condensing operators, Agarwal et al. [1] studied the existence of a nonoscillatory solution for the second-order neutral delay difference equation????????????+??????-?????+????+1,????+1-???=0,??=0,(1.4) where ???R?{±1}. Using the Banach contraction principle, Cheng [5] discussed the existence of a positive solution for the second-order neutral delay difference equation with positive and negative coefficients?2?????+??????-???+????????-??-????????-??=0,??=??0,(1.5) where ???R?{-1}, Liu et al. [6] and Liu et al. [7] extended the results due to cheng [5] and got the existence of uncountably many bounded nonoscillatory solutions for (1.1) and the second-order nonlinear neutral delay difference equation????????????+??????-?????+????,????-??1??,????-??2??,,????-???????=????,??=??0,(1.6) with respect to ???R, where ?? is Lipschitz continuous, respectively.

The purpose of this paper is to establish the existence results of uncountably many bounded nonoscillatory, positive, and negative solutions, respectively, for (1.1) by using the Krasnoselskii fixed point theorem, Schauder fixed point theorem, and a few new techniques. The results obtained in this paper improve essentially the corresponding results in [57] by removing the Lipschitz continuity condition. Ten nontrivial examples are given to reveal the superiority and applications of our results.

2. Preliminaries

Throughout this paper, we assume that ? is the forward difference operator defined by ?????=????+1-????,?2????=?(?????),R=(-8,+8),R+=[0,+8),R-=(-8,0), and Z, N, and N0 stand for the sets of all integers, positive integers, and nonnegative integers, respectively,N??0=???:???N0with??=??0?,??0?N0,?????=min0???-??,inf????,??????:1=??=??,???N??0,Z????={??:???Zwith??=??}.(2.1) Let ??8?? denote the Banach space of all bounded sequences in Z?? with norm????=sup???Z??||????||???for??=??????Z?????8??,??????(??,??)=??=??????Z?????8???:???-???=??for??={??}???Z?????8??,??>0(2.2) represent the closed ball centered at ?? and with radius ?? in ??8??.

By a solution of (1.1), we mean a sequence {????}??????? with a positive integer ??=??0+??+|??| such that (1.1) is satisfied for all ??=??. As is customary, a solution of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory.

Lemma 2.1 ([2]). A bounded, uniformly Cauchy subset ?? of ??8?? is relatively compact.

Lemma 2.2 (Krasnoselskii fixed point theorem [10]). Let ?? be a nonempty bounded closed convex subset of a Banach space ?? and ??,??:????? mappings such that ????+??????? for every pair ??,?????. If ?? is a contraction and ?? is completely continuous, then ????+????=??(2.3) has a solution in ??.

Lemma 2.3 (Schauder fixed point theorem [10]). Let ?? be a nonempty closed convex subset of a Banach space ?? and ??:????? a continuous mapping such that ??(??) is a relatively compact subset of ??. Then, ?? has a fixed point in ??.

Lemma 2.4. Let ???N,??0?N0 and {????}???N??0 be a nonnegative sequence. Then, 8?8??=0???=??0+????????<+8?8???=??0??????<+8.(2.4) Moreover, if ?8??=0?8??=??0+????????<+8, then 8?8??=0???=??0+????????=8???=??0???1+???????<+8.(2.5)

Proof. For each ???R, let [??] stand for the largest integer not exceeding ??. It follows that 8?8??=0???=??0+????????=8???=??0????+8???=??0+??????+8???=??0+2??????=+?8???=??0??1+??-??0????????=8???=??0???1+???????,(2.6)lim???8?1+??-??0?/????/??=1.(2.7) Combining (2.6) and (2.7), we infer that (2.4) holds. Assume that ?8??=0?8??=??0+????????<+8. In view of (2.4), we get that ?8??=??0??????<+8, which gives that ?8??=??0????<+8. It follows that 8???=??0???1+???????<+8.(2.8) This completes the proof.

3. Existence of Uncountably Many Bounded Positive Solutions

Now, we use the Krasnoselskii fixed point theorem to prove the existence of uncountably many bounded nonoscillatory, positive, and negative solutions of (1.1) under various conditions relative to the sequence {????}???N???R.

Theorem 3.1. Assume that there exist ??1?N??0,???R,??,???R+?{0} and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying ||??||1<??<1-????,||????||=??,???=??1,||???(3.1)??,??1,,?????||=????,||?????,??1,,?????||=?????,???,??????N??0×[]??-??,??+??,1=??=??,(3.2)8???=??0+11||????||???max??,??-1???=??0???max??,||????||??<+8.(3.3) Then, (1.1) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Proof. Let ???(??-(1-??)??+??|??|,??+(1-??)??-??|??|). It follows from (3.3) that there exists ??=1+??0+??1+??+|??| satisfying 8???=??1||????||?????+??-1???=??0?????+||????||??||??||-||||.=(1-??)??-????-??(3.4) Define two mappings ???? and ????:??(??,??)???8?? by ????????=???-????????-????,??=??,????????,??=??<??,(3.5)??????=?????8???=??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-????????,??=??,??????,??=??<??,(3.6) for any ??={????}???Z?????(??,??).
Now, we assert that ??????+?????????????(??,??),???,?????(??,??),(3.7)????-????????????=?????-???,???,?????(??,??),(3.8)??????=??,??????(??,??).(3.9) It follows from (3.1), (3.2), and (3.4)–(3.6) that for any ??={????}???Z??,??={????}???Z?????(??,??), and ??=??, ||????????+????????||=|||||-????-??-????????-??+8???=??1????×??????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=||||?||??||?+??-??+??+??8???=??1||????||?????+??-1???=??0?????+||????||??=||||?||??||?||??||-||||||????-??+??+??+(1-??)??-????-??=??,??????-????????||=||?????????-??-????-???||||??=?????-???,??????||=8???=??1||????||?????+??-1???=??0?????+||????||??=||??||-||||(1-??)??-????-??=??,(3.10) which imply that (3.7)–(3.9) hold.
Next, we prove that ???? is continuous and ????(??(??,??)) is uniformly Cauchy. It follows from (3.3) that for each ??>0, there exists ??>?? satisfying 8???=??1||????||?????+??-1???=??0?????+||????||??<??4.(3.11) Let ????={??????}???Z?? and ??={????}???Z?????(??,??) satisfy that lim???8????=??.(3.12) In view of (3.12) and the continuity of ?? and ??, we know that there exists ???N such that ??-1???=??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?<??2,???=??.(3.13) Combining (3.6), (3.11), and (3.13), we obtain that ??????????-????????=8???=??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?=??-1???=??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?+28???=??1||????||?????+??-1???=??0?????<??,???=??,(3.14) which means that ???? is continuous in ??(??,??).
In view of (3.6) and (3.11), we obtain that for any ??={????}???Z?????(??,??) and ??,h=??||????????-??????h||=|||||8???=??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||+|||||8???=h1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=28???=??1||????||?????+??-1???=??0?????+||????||??<??,(3.15) which implies that ????(??(??,??)) is uniformly Cauchy, which together with (3.9) and Lemma 2.1 yields that ????(??(??,??)) is relatively compact. Consequently, ???? is completely continuous in ??(??,??). Thus, (3.7), (3.8), and Lemma 2.2 ensure that the mapping ????+???? has a fixed point ??={????}???Z?????(??,??), which together with (3.5) and (3.6) implies that ????=??-????????-??+8???=??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????,??=??,(3.16) which yields that ????????????+????????-????+????,????1??,,???????????+????,????1??,,?????????=????,??=??.(3.17) That is, ??={????}???Z?? is a bounded nonoscillatory solution of (1.1) in ??(??,??).
Let ??1,??2?(??-(1-??)??+??|??|,??+(1-??)??-??|??|), and ??1???2. Similarly, we can prove that for each ???{1,2}, there exist a constant ????=1+??0+??1+??+|??| and two mappings ?????? and ??????:??(??,??)???8?? satisfying (3.4)–(3.6), where ??,??,????, and ???? are replaced by ????,????,??????, and ??????, respectively, and ??????+?????? has a fixed point ???????(??,??), which is a bounded nonoscillatory solution of (1.1); that is, ??????=????-??????????-??+8???=??1??????????,??????1??,,???????????+??-1???=??0??????,??????1??,,???????????-??????,???=????,???{1,2}.(3.18) Note that (3.3) implies that there exists ??3>max{??1,??2} satisfying 8???=??31||????||?????+??-1???=??0?????<||??1-??2||4.(3.19) Using (3.2), (3.18), and (3.19), we get that for any ??=??3, ||??1??-??2??+???????1??-??-??2??-???||=|||||??1-??2+8???=??1???????????,??1??1??,,??1????????-????,??2??1??,,??2??????+????-1???=??0??????,??1??1??,,??1????????-????,??2??1??,,??2???????|||||=||????1-??2||-28???=??31||????||?????+??-1???=??0?????>||??1-??2||2>0,(3.20) that is, ??1???2. Therefore, (1.1) possesses uncountably many bounded nonoscillatory solutions in ??(??,??). This completes the proof.

Theorem 3.2. Assume that there exist ??1?N??0,???R,??,???R+?{0}, and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ||??||??<1-????,||????||=??,???=??1.(3.21) Then, (1.1) has uncountably many bounded solutions in ??(??,??).

The proof of Theorem 3.2 is analogous to that of Theorem 3.1 and hence is omitted.

Theorem 3.3. Assume that there exist ??1?N??0,???R,??,??*,??*?R+?{0}, and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ||??||??<??*-1??*+1,1<??*=||????||=??*,???=??1.(3.22) Then, (1.1) has uncountably many bounded solutions in ??(??,??).

Proof. Let ???(-(??*-1)??+(??*+1)|??|,(??*-1)??-(??*+1)|??|). It follows from (3.3) that there exists ??=1+??0+??1+??+|??| satisfying 8???=??1||????||?????+??-1???=??0?????+||????||??=???*????-1??-*?||??||-||??||.+1(3.23) Define two mappings ???? and ????:??(??,??)???8?? by ????????=???????+??-????+??????+????,??=??,????????,??=??<??,(3.24)??????=?????1??8??+?????=??+??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-????????,??=??,??????,??=??<??,(3.25) for any ??={????}???Z?????(??,??).
Now, we assert that (3.7), (3.9), and the below ????????-????????=1??*???-???,???,?????(??,??)(3.26) hold. It follows from (3.2) and (3.22)–(3.25) that for any ??={????}???Z??,??={????}???Z?????(??,??), and ??=??, ||????????+????????||=|||||??-??????+????-??-??+??????+??+1??8??+?????=??+??1????×??????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=1??*||??-????+????||+||??||+????*+1??*8???=??1||????||?????+??-1???=??0?????+||????||??=1??*?||??||+??*||??||?+||??||+????*+1??*????*????-1??-*?||??||-||??||?||??+1=??,??????-????????||=||||1????+???????+??-????+???||||=1??*?||????-???,??????||=1??*8???=??1||????||?????+??-1???=??0?????+||????||??=1??*????*????-1??-*?||??||-||??||?+1=??,(3.27) which imply (3.7), (3.9), and (3.26).
Next, we show that ???? is continuous and ????(??(??,??)) is uniformly Cauchy. It follows from (3.3) that for each ??>0, there exists ??>?? satisfying (3.11). Let ????={??????}???Z?? and ??={????}???Z?????(??,??) with (3.12). It follows from (3.12) and the continuity of ?? and ?? that there exists ???N satisfying (3.13). In light of (3.11), (3.13), and (3.25), we deduce that ??????????-????????=1??*8???=??+??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?=1??*??-1???=??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?+2??*8???=??1||????||?????+??-1???=??0?????<????*,???=??,(3.28) which yields that ???? is continuous in ??(??,??).
Using (3.1) and (3.25), we get that for any ??={????}???Z?????(??,??) and ??,h=??||????????-??????h||=|||||1??8??+?????=??+??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||+|||||1??8h+?????=h+??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=2??*8???=??1||????||?????+??-1???=??0?????+||????||??<????*,(3.29) which means that ????(??(??,??)) is uniformly Cauchy, which together with (3.9) and Lemma 2.1 yields that ????(??(??,??)) is relatively compact. Consequently, ???? is completely continuous in ??(??,??). Thus, (3.22), (3.26), and Lemma 2.2 ensure that the mapping ????+???? has a fixed point ??={????}???Z?????(??,??); that is, ????=??????+??-????+??????+??+1??8??+?????=??+??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????,??=??,(3.30) which gives that ????????????+????????-????+????,????1??,,???????????+????,????1??,,?????????=????,??=??+??.(3.31) That is, ??={????}???Z?? is a bounded solution of (1.1) in ??(??,??).
Let ??1,??2?(-(??*-1)??+(??*+1)|??|,(??*-1)??-(??*+1)|??|) and ??1???2. Similarly, we conclude that for each ???{1,2}, there exist a constant ????=1+??0+??1+??+|??| and two mappings ?????? and ??????:??(??,??)???8?? satisfying (3.23)–(3.25), where ??,??,????, and ???? are replaced by ????,????,??????, and ??????, respectively, and ??????+?????? has a fixed point ???????(??,??), which is a bounded solution of (1.1); that is, ??????=????????+??-??????+??????+??+1??8??+?????=??+??1??????????,??????1??,,???????????+??-1???=??0??????,??????1??,,???????????-??????,(3.32) for all ??=???? and ???{1,2}. Note that (3.3) implies that there exists ??3>max{??1,??2} satisfying (3.19). By means of (3.2), (3.19), and (3.32), we infer that for any ??=??3, ||||??1??-??2??+??????+??-??2??+??????+??||||=|||||??1-??2????+??+1??8??+?????=??+??1???????????,??1??1??,,??1????????-????,??2??1??,,??2??????+????-1???=??0??????,??1??1??,,??1????????-????,??2??1??,,??2???????|||||=||????1-??2||??*-2??*8???=??31||????||?????+??-1???=??0?????>||??1-??2||2??*>0,(3.33) that is, ??1???2. Therefore, (1.1) possesses uncountably many bounded solutions in ??(??,??). This completes the proof.

Similar to the proofs of Theorems 3.1 and 3.3, we have the following results.

Theorem 3.4. Assume that there exist ??1?N??0,???R,??,??*,??*?R+?{0} and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ||??||???>??,2*??*+??*??*2-??*2-??2*??????>*2-??2*-??2*??*+??*??*2?||??||,1<??*=????=??*,???=??1.(3.34) Then, (1.1) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Theorem 3.5. Assume that there exist ??1?N??0,??,???R+?{0},??*,??*?R- and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ???>??,??2+??*+??*????<??*-??*?,??*=????=??*<-1,???=??1.(3.35) Then, (1.1) has uncountably many bounded positive solutions in ??(??,??).

Theorem 3.6. Assume that there exist ??1?N??0,???R+?{0},??,??*?R-?{0},??*?R- and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ???-??>??,??*-??*??>??2+??*+??*?,??*=????=??*,???=??1.(3.36) Then, (1.1) has uncountably many bounded negative solutions in ??(??,??).

Theorem 3.7. Assume that there exist ??1?N??0,???R?{0},??*,???R+?{0} and two negative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ||??||1<??<2-??*??*,0=????=??*,???=??1.(3.37) Then, (1.1) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Theorem 3.8. Assume that there exist ??1?N??0,???R?{0},??*?R-?{0},???R+?{0} and two negative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ||??||1<??<??*+2-??*,??*=????=0,???=??1.(3.38) Then, (1.1) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Next, we investigate the existence of uncountably bounded nonoscillatory solutions for (1.1) with the help of the Schauder fixed point theorem under the conditions of ????=±1.

Theorem 3.9. Assume that there exist ??1?N??0,???R,???R+?{0} and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), (3.3), and ||??||>??,b??=1,???=??1.(3.39) Then, (1.1) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Proof. Let ???(??-??,??+??). It follows from (3.3) that there exists ??=1+??0+??1+??+|??| satisfying 8???=??1||????||?????+??-1???=??0?????+||????||??||||.=??-??-??(3.40) Define a mapping ????:??(??,??)???8?? by ????????=???????+8???=1??+2????-1???=??+(2??-1)??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-????????,??=??,??????,??=??<??,(3.41) for any ??={????}???Z?????(??,??).
Now, we prove that ?????????????(??,??),??????=||??||+??,??????(??,??).(3.42) It follows from (3.2) and (3.39)–(3.41) that for any ??={????}???Z?????(??,??) and ??=??, ||????????||=|||||-????-??+8???=1??+2????-1???=??+(2??-1)??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=||||+??-??8???=??1||????||?????+??-1???=??0?????+||????||??=||||||||||????-??+??-??-??=??,??????||=||??||+8???=??1||????||?????+??-1???=??0?????+||????||??=||??||||||=||??||+??-??-??+??,(3.43) which imply (3.42).
Next, we prove that ???? is continuous and ????(??(??,??)) is uniformly Cauchy. It follows from (3.3) that for each ??>0, there exists ??>?? satisfying (3.11). Let ????={??????}???Z?? and ??={????}???Z?????(??,??) satisfying (3.12). It follows from (3.12) and the continuity of ?? and ?? that there exists ???N satisfying (3.13). Combining (3.11), (3.13), and (3.41), we infer that ??????????-????????=sup??=???8???=1??+2????-1???=??+(2??-1)??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||=??8???=??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?=??-1???=??1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?+28???=??1||????||?????+??-1???=??0?????<??,???=??,(3.44) which implies that ???? is continuous in ??(??,??).
By means of (3.11) and (3.41), we get that for any ??={????}???Z?????(??,??) and ??,h=??||????????-??????h||=|||||8???=1??+2????-1???=??+(2??-1)??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||+|||||8???=1h+2????-1???=h+(2??-1)??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=28???=??1||????||?????+??-1???=??0?????+||????||??<??,(3.45) which means that ????(??(??,??)) is uniformly Cauchy, which together with (3.42) and Lemma 2.1 yields that ????(??(??,??)) is relatively compact. It follows from Lemma 2.3 that the mapping ???? has a fixed point ??={????}???Z?????(??,??); that is, ????=??+8???=1??+2????-1???=??+(2??-1)??1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????,??=??,(3.46) which give that ????????????+????-????+????,????1??,,???????????+????,????1??,,?????????=????,??=??+??.(3.47) That is, ??={????}???Z?????(??,??) is a bounded nonoscillatory solution of (1.1).
Let ??1,??2?(??-??,??+??) and ??1???2. Similarly, we infer that for each ???{1,2}, there exist a constant ????=1+??0+??1+??+|??| and a mapping ??????:??(??,??)???8?? satisfying (3.41), where ??,??,and???? are replaced by ????,????, and ??????, respectively, and ?????? has a fixed point ???????(??,??), which is a bounded nonoscillatory solution of (1.1); that is, ??????=????+8???=1??+2????-1???=??+(2??-1)??1??????????,??????1??,,???????????+??-1???=??0??????,??????1??,,???????????-??????,??=????,(3.48) for ???{1,2}. Note that (3.3) implies that there exists ??3>max{??1,??2} satisfying (3.19). Using (3.2), (3.19), and (3.48), we conclude that for any ??=??3||??1??-??2??||=|||||??1-??2+8???=1??+2????-1???=??+(2??-1)??1???????????,??1??1??,,??1????????-????,??2??1??,,??2??????+????-1???=??0??????,??1??1??,,??1????????-????,??2??1??,,??2???????|||||=||????1-??2||-28???=1??+2????-1???=??+(2??-1)??1||????||?????+??-1???=??0?????=||??1-??2||-28???=??31||????||?????+??-1???=??0?????>||??1-??2||2>0,(3.49) which gives that ??1???2. Therefore, (1.1) possesses uncountably many bounded nonoscillatory solutions in ??(??,??). This completes the proof.

Theorem 3.10. Assume that there exist ??1?N??0,???R,???R+?{0} and two nonnegative sequences {????}???N??0 and {????}???N??0 satisfying (3.2), ||??||??>??,??=-1,???=??1,(3.50)8?8??=1???=??0+????1||????||???max??,??-1???=??0???max??,||????||??<+8.(3.51) Then, (1.1) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Proof. Let ???(??-??,??+??). It follows from (3.41) that there exists ??=1+??0+??1+??+|??| satisfying 8?8??=1???=??+????1||????||?????+??-1???=??0?????+||????||??||||.=??-??-??(3.52) Define a mapping ????:??(??,??)???8?? by ????????=???????-8?8??=1???=??+????1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-????????,??=????????,??=??<??,(3.53) for any ??={????}???Z?????(??,??). It follows from (3.2), (3.52), and (3.53) that for any ??={????}???Z?????(??,??) and ??=??||????????||=|||||-????-??-8?8??=1???=??+????1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=||||+??-??8?8??=1???=??+????1||????||?????+??-1???=??0?????+||????||??=||||||||||????-??+??-??-??=????????||=||??||+8?8??=1???=??+????1||????||???-1???=??0?????+||????||?+?????=||??||+??,(3.54) which imply (3.42).
Next, we show that ???? is continuous and ????(??(??,??)) is uniformly Cauchy. It follows from (3.51) and Lemma 2.4 that for each ??>0, there exists ??>1+??+?? satisfying 8???=?????1+???1||????||?????+??-1???=??0?????+||????||??<??4.(3.55) Let ????={??????}???Z?? and ??={????}???Z?????(??,??) satisfying (3.12). By means of (3.12) and the continuity of ?? and ??, we deduce that there exists ???N satisfying ??-1???=??+?????1+???1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?<??2,???=??.(3.56) In light of (3.2), (3.53)–(3.56) and Lemma 2.4, we conclude that ??????????-????????=8?8??=1???=??+????1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?=8???=??+?????1+???1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?=??-1???=??+?????1+???1||????||?|||?????,??????1??,,????????????-????,????1??,,?????????|||+??-1???=??0|||?????,??????1??,,????????????-????,????1??,,?????????|||?+28???=?????1+???1||????||?????+??-1???=??0?????<??,???=??,(3.57) which implies that ???? is continuous in ??(??,??).
By virtue of (3.53), (3.55), and Lemma 2.4, we get that for any ??={????}???Z?????(??,??) and ??,h=??, ||????????-??????h||=|||||8?8??=1???=??+????1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||+|||||8?8??=1???=h+????1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????|||||=28?8??=1???=??+????1||????||?????+??-1???=??0?????+||????||??=28???=?????1+???1||????||?????+??-1???=??0?????+||????||??<??,(3.58) which means that ????(??(??,??)) is uniformly Cauchy, which together with (3.42) and Lemma 2.1 yields that ????(??(??,??)) is relatively compact. It follows from Lemma 2.3 that the mapping ???? has a fixed point ??={????}???Z?????(??,??); that is, ????=??-8?8??=1???=??+????1??????????,????1??,,?????????+??-1???=??0??????,????1??,,?????????-??????,??=??,(3.59) which means that ????????????-????-????+????,????1??,,???????????+????,????1??,,?????????=????,??=??+??.(3.60) That is, ??={????}???Z?? is a bounded nonoscillatory solution of (1.1) in ??(??,??).
Let ??1,??2?(??-??,??+??) and ??1???2. Similarly, we conclude that for each ???{1,2}, there exist a positive integer ????=1+??0+??1+??+|??| and a mapping ??????:??(??,??)???8?? satisfying (3.53), where ??,??,and???? are replaced by ????,????, and ??????, respectively, and ?????? has a fixed point ???????(??,??), which is a bounded nonoscillatory solution of (1.1); that is, ??????=??l-8?8??=1???=??+????1??????????,??????1??,,???????????+??-1???=??0??????,??????1??,,???????????-??????,??=??,(3.61) for ???{1,2}. Note that (3.41) implies that there exists ??3>max{??1,??2} satisfying 8?8??=1???=??3+????1||????||?????+??-1???=??0?????<||??1-??2||4,(3.62) which together with (3.2), (3.53), and (3.61) gives that ||??1??-??2??||=|||||??1-??2-8?8??=1???=??+????1???????????,??1??1??,,??1????????-????,??2??1??,,??2??????+????-1???=??0??????,??1??1??,,??1????????-????,??2??1??,,??2???????|||||=||????1-??2||-28?8??=1???=??3+????1||????||?????+??-1???=??0?????>||??1-??2||2>0,???=??3,(3.63) that is, ??1???2. Therefore, (1.1) possesses uncountably many bounded nonoscillatory solutions in ??(??,??). This completes the proof.

Remark 3.11. Theorems 3.1 and 3.43.10 generalize Theorem??1 in [5] and Theorems 2.1–2.7 in [6, 7], respectively. The examples in Section 4 reveal that Theorems 3.1 and 3.43.10 extend authentically the corresponding results in [57].

4. Examples and Applications

Now, we construct ten examples to explain the advantage and applications of the results presented in Section 3. Note that Theorem??1 in [5] and Theorem ??2.1–2.7 in [6, 7] are invalid for Examples 4.14.10, respectively.

Example 4.1. Consider the second-order nonlinear neutral delay difference equation ?????6?????ln????+(-1)??(??-1)??3??+1??-???+5??3??2??+1??+??23??-15?+??2????3+1??2??2+3=(??-1)2,??=2,(4.1) where ??0=2 and ???N are fixed. Let ??1=6, ??=2, ??=±6, ??=5, ??=1/3, ??=min{2-??,-9}, and ????=??6ln??,????=(-1)??(??-1)3??+1,????=(??-1)2,??(??,??,??)=5????3??+??2,??1??=2??+1,??2??=3??-15,??(??,??,??)=??????2,??1??=??3+1,??2??=2??2??+3,??=55??2,????=121??2,(??,??,??)?N??0×[]??-??,??+??2.(4.2) It is easy to show that (3.1)–(3.3) hold. It follows from Theorem 3.1 that (4.1) possesses uncountably many bounded nonoscillatory solutions in ??(??,??).

Example 4.2. Consider the second-order nonlinear neutral delay difference equation ????2(1-2??)3??????+(-1)??-1(3+sin??)??4+sin????-???+3??2????2??5???+2????2??-91+??3||??3??3||=??2,??=2,(4.3) where ??0=2 and ???N are fixed. Let ??1=5, ??=2, ??=±2, ??=11, ??=5/6, ??=min{2-??,-5}, and ????=??2(1-2??)3,????=(-1)??-1(3+sin??)4+sin??,????=??2,??(??,??,??)=3??2??????,1??=??2,??2??=5??,??(??,??,??)=2????1+??3|??|,??1??=2??-9,??2??=3??3,????=507??2,????=26??,(??,??,??)?N??0×[]??-??,??+??2.(4.4) It is clear that (3.2), (3.3), and (3.21) hold. It follows from Theorem 3.2 that (4.3) possesses uncountably many bounded solutions in ??(??,??).

Example 4.3. Consider the second-order nonlinear neutral delay difference equation ?????8sin(-1)???????????+(-1)??-1?4??3?+1??3??+2??+2??-???+4??2??3??+11+????2??2-1?+??4??22????3??-3=??3,??=1,(4.5) where ??0=1 and ???N are fixed. Let ??1=10, ??=2, ??=±1, ??=5, ??*=3, ??*=4, ??=min{1-??,-2}, and ????=??8sin(-1)????,????=(-1)??-1?4??3?+1??3+2??+2,????=??3,??(??,??,??)=4????31+????2,??1??=??+1,??2??=??2-1,??(??,??,??)=??4??2??3,??1??=2??,??2????=??-3,??=864??2,????=7776??4,(??,??,??)?N??0×[]??-??,??+??2.(4.6) It is easy to see that (3.2), (3.3), and (3.22) hold. It follows from Theorem 3.3 that (4.5) possesses uncountably many bounded solutions in ??(??,??).

Example 4.4. Consider the second-order nonlinear neutral delay difference equation ????5?1sin???-1/(ln??)??????+3??2+1??2??+??+2??-???+????2??2+31+??cos2??2???+??4-??3????2+??2??+1=(-1)????-1,??=2,(4.7) where ??0=2 and ???N are fixed. Let ??1=5, ??=2, ??=±4, ??=3, ??*=2, ??*=3, ??=2-??, and ????=??5?1sin???-1/(ln??),????=3??2+1??2+??+2,????=(-1)????-1,??(??,??,??)=????21+??cos2??,??1??=??2+3,??2????=2??,??(??,??,??)=4-????2+??2,??1??=3??,??2????=??+1,??=49??,????=??2+7,(??,??,??)?N??0×[]??-??,??+??2.(4.8) It is easy to show that (3.2), (3.3), and (3.34) hold. It follows from Theorem 3.4 that (4.7) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Example 4.5. Consider the second-order nonlinear neutral delay difference equation ????6?11+?1+??3????????-?6-2ln1+??2??5+ln1+??2?????-???+????2??+1??4??-9?+??2??3????34??=2??2,??=0,(4.9) where ??0=0 and ???N are fixed. Let ??1=10, ??=2, ??=9, ??=7, ??*=-2, ??*=-17/15, ??=min{-??,-9}, and ????=??6?11+?1+??3??,?????=-6-2ln1+??2??5+ln1+??2?,????=2??2,??(??,??,??)=??????4,??1??=2??+1,??2??=??+2,??(??,??,??)=??2????3,??1??=3??,??2????=4??,??=1048576??,????=65536??2,(??,??,??)?N??0×[]??-??,??+??2.(4.10) It is easy to show that (3.2), (3.3), and (3.35) hold. It follows from Theorem 3.5 that (4.9) has uncountably many bounded positive solutions in ??(??,??).

Example 4.6. Consider the second-order nonlinear neutral delay difference equation ??(-1)??-1??17(??-4)5??????+3-2??45+??+??4????-???+??18-??7??23??-19?ln3+??5||??2??||??+??2??2??+51+??22??+3=??15,??=5,(4.11) where ??0=5 and ???N are fixed. Let ??1=5, ??=2, ??=-9, ??=7, ??*=-2, ??*=-1715, ??=min{5-??,-4}, and ????=(-1)??-1??17(??-4)5,????=3-2??45+??+??4,????=??15??,??(??,??,??)=18-??7??2?ln3+??5?,??|??|1??=3??-18,??2????=2??,??(??,??,??)=2??21+??2,??1??=??+5,??2????=2??+3,??=??18+256??7,????=256??2,(??,??,??)?N??0×[]??-??,??+??2.(4.12) It is easy to show that (3.2), (3.3), and (3.36) hold. It follows from Theorem 3.6 that (4.11) has uncountably many bounded negative solutions in ??(??,??).

Example 4.7. Consider the second-order nonlinear neutral delay difference equation ????8???lncos?????????+5??2-2??+1706??2??+??+1??-???-??2??2????+??24???+??2-??32??-3||??1+????-6||=??2(2-??),??=3,(4.13) where ??0=3 and ???N are fixed. Let ??1=60, ??=2, ??=±7, ??=6, ??*=5/6, ??=min{3-??,-3}, and ????=??8???lncos???,????=5??2-2??+1706??2+??+1,????=??2??(2-??),??(??,??,??)=-2????+??2,??1??=2??,??2????=4??,??(??,??,??)=2-??31+??|??|,??1??=2??-3,??2????=??-6,??=13??,????=2197+??2,(??,??,??)?N??0×[]??-??,??+??2.(4.14) It is clear (3.2), (3.3), and (3.37) hold. It follows from Theorem 3.7 that (4.13) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Example 4.8. Consider the second-order nonlinear neutral delay difference equation ????6??????+1-8??43+9??4????-???+??3????+1-???2???+12??-31+????2??-3?+??2+??32??+52+??2||??3??-1||=(-1)????3,??=4,(4.15) where ??0=4 and ???N are fixed. Let ??1=4, ??=2, ??=±7, ??=6, ??*=-8/9, ??=min{4-??,1}, and ????=??6,????=1-8n43+9??4,????=(-1)????3??,??(??,??,??)=3?????-2???+121+????2,??1??=??+1,??2????=??-3,??(??,??,??)=2+??32+??2|??|,??1??=2??+5,??2????=3??-1,??=13??3???+1692?+1,????=??2+2197,(??,??,??)?N??0×[]??-??,??+??2.(4.16) It is clear (3.2), (3.3), and (3.38) hold. It follows from Theorem 3.8 that (4.15) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Example 4.9. Consider the second-order nonlinear neutral delay difference equation ????6?11+???????????+????-???+(??-1)2-????3??+1??2?ln3+????26????+1-??3+????27??1+??+??5||??53????37??||=(-1)????2??3+1,??=1,(4.17) where ??0=1 and ???N are fixed. Let ??1=1, ??=2, ??=±6, ??=2, ??=1-??, and ????=??6?11+?????,????=(-1)????2??3+1,??(??,??,??)=(??-1)2-??????2?ln3+????2?,??1????=3??+1,2??=6??,??(??,??,??)=1-??3+????21+??+??5||??5??3||,??1??=7??,??2??=3??,????8=1+??,????=1+64??+??3,(??,??,??)?N??0×[]??-??,??+??2.(4.18) It is clear (3.2), (3.3), and (3.39) hold. It follows from Theorem 3.9 that (4.17) has uncountably many bounded nonoscillatory solutions in ??(??,??).

Example 4.10. Consider the second-order nonlinear neutral delay difference equation ????4(1-2??)(2??-3)2??????-????-???+5????3??3-??+22+??3||??5??5+3||?+??2??3??3+4??4??3-5=??2,??=2,(4.19) where ??0=2 and ???N are fixed. Let ??1=2, ??=2, ??=±10, ??=6, ??=2-??, and ????=??4(1-2??)(2??-3)2,????=??2,??(??,??,??)=5????2+??3|??|,??1??=3??3??-??+2,2??=5??5+3,??(??,??,??)=??????2,??1??=3??3+4,??2??=4??3-5,??????=40??,??=256??2,(??,??,??)?N??0×[]??-??,??+??2.(4.20) It is clear (3.2), (3.50), and (3.51) hold. It follows from Theorem 3.10 that (4.19) possesses uncountably bounded nonoscillatory solutions in ??(??,??).

Acknowledgment

This research is financially supported by Changwon National University in 2011.