International Journal of Food Science
 Journal metrics
See full report
Acceptance rate11%
Submission to final decision133 days
Acceptance to publication20 days
CiteScore5.200
Journal Citation Indicator0.580
Impact Factor4.0

Extraction, Physicochemical Properties, and In Vitro Antioxidant Activities of Chondroitin Sulfate from Bovine Nose Cartilage

Read the full article

 Journal profile

International Journal of Food Science publishes research in all areas of food science. It is a multidisciplinary journal and includes research on enhancing shelf life, food deterioration, food engineering, food handling, food processing and similar.

 Editor spotlight

Chief Editor, Giorgia Spigno, is a Professor of Food Science and Technology at Università Cattolica del Sacro Cuore. Her research focuses on the valorisation of agro-food waste, food product development, and food packaging.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Health Risk Assessment of Potentially Toxic Elements Contamination of Commonly Consumed Fruits in Bahir Dar Town, Northwest Ethiopia

Background. Excess accumulation of potentially toxic elements in frequently consumed fruits is a serious threat to human health. The aim of this study was to determine the levels of cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) and to estimate the noncarcinogenic and carcinogenic health risks associated with their daily intake in commonly consumed fruits in Bahir Dar town, northwest Ethiopia. Methods. Three types of fruits (mango, banana, and orange) were collected using a simple random sampling method from open markets in Bahir Dar town. Wet digestion was used, and the concentration of potentially toxic elements was analyzed in the edible portion of the fruits. The average daily intake (ADI), hazard quotient (HQ), hazard index (HI), and target cancer risk (TCR) were estimated to assess the human health risks posed by the intake of those potentially toxic elements from the consumption of the studied fruits. Results. The concentrations of Cr and Cu were lower than the maximum limit of normal values in mango, banana, and orange. However, the Pb and Cd concentrations (mg kg-1) in mango were 0.576 and 1.771, respectively, which exceeded the FAO/WHO recommended permissible limits of 0.3 mg kg-1 and 0.2 mg kg-1, respectively. The ADI of potentially toxic elements was found to be lower than the maximum permitted tolerable daily intake in the studied fruits, and the HI values (mgday-1 kg-1) of all studied potentially toxic elements were lower than one in banana and orange, except mango (3.69). The TCR values for Pb, Cd, and Cr in banana and orange were and , respectively, which exceeded the recommended threshold risk limit (), but in mango (), the level was above the moderate risk limit (). However, the TCR value in all the studied fruits was above the recommended safe limit () set by the United States Environmental Protection Agency (US-EPA). Conclusion. The study revealed that the consumption of mango fruit in the studied areas may pose noncarcinogenic and carcinogenic adverse health effects.

Research Article

Assessment of Physicochemical Properties of Orange Juice Concentrate Formulated with Pectin, Xanthan, and CMC Hydrocolloids

Orange concentrate (OC) is one of the main raw materials in the nonalcoholic beverage industry. Considering the difference in orange varieties, preserving its natural quality is essential to yield a product with favorable attributes and physical stability. Thus, the present study is aimed at assessing the effect of pectin, xanthan, and carboxymethyl cellulose (CMC) in a concentration range of 0–0.2% () along with mixing temperature on Brix, pH, acidity, density, turbidity, and viscosity of OC and at calculating the model equation for each attribute. The results showed that, except for CMC, the influence of concentration, type, and amount of hydrocolloid on pH changes was insignificant. Adding each hydrocolloid individually, in pairs, or threes reduced the density, and the measured density was lower at a mixing temperature of 4°C. Also, it was observed that mixing temperature was the only factor influencing turbidity, and the values were significantly lower at 80°C compared to 4°C. A significant interaction effect of xanthan concentration and mixing temperature on the Brix was observed. Adding hydrocolloids, except pectin, resulted in a significant () increase in viscosity, and xanthan had the greatest effect on the viscosity. A suitable model was designed using pectin and xanthan, pectin and CMC, and all three gums, resulting in a final OC product with high stability and improved physical and chemical attributes. The optimized values for Brix, pH, acidity, density, turbidity, and OC viscosity were achieved using 0.08% pectin, 0.19% xanthan, and 0.08% CMC at 80°C mixing temperature.

Research Article

Application of Plant-Based Hydrocolloids on the Textural Profile of Vegan Gummies Supplemented with Turmeric and Black Pepper

Gummies belong to a confectionery category characterized by a hydrocolloid, acting as a stabilizer, forming a network to retain a high-moisture sugar syrup, and hydrocolloids play a key role in shaping the visual appeal, flavour release, and texture of the gel network. This study investigates the potential substitution of gelatin in gummies with plant-based hydrocolloids like agar-agar and guar gum. It is also aimed at optimizing the level of functional ingredients like curcumin and piperine in standardized gummies through incorporation of turmeric and black pepper, respectively. These plant-based gelling agents mimic gelatin’s chewable, firm, and elastic texture, catering to broader consumption and suitability for versatile use. Consumer interest in healthier diets has spurred the transition towards plant-based functional foods, leading to the replacement of gelatin gummies with plant-based alternatives. Agar-agar significantly influences gummy texture by contributing to firmness, elasticity, and stable gel formation, imparting essential strength and consistency. Guar gum, recognized as a plant-based hydrocolloid, enhances gummy texture, consistency, and moisture retention through thickening and stabilization. While agar-agar and guar gum individually fell short in achieving the desired textural attributes in the gummies, their combined use (1% agar-agar and 5.5% guar gum) yielded optimal chewiness ( N), gumminess ( N), and high overall acceptability (8.96), resembling gelatin-based gummies. The optimized formulation included 40% sugar, 2% citric acid, 2% turmeric, and 0.6% black pepper. The developed vegan gummies contained  mg/100 g total phenols, % antioxidant capacity, % curcumin, and % piperine. Consequently, the combined use of agar-agar and guar gum emerged as stable and effective gelling agents, offering an alternative to gelatin for creating turmeric and black pepper-infused gummies with desirable texture and functional attributes.

Research Article

In Vitro Antioxidant and Antimicrobial Properties of Composite Flour Formulations Developed Using Selected Local Grain Varieties

The aim of this study was to determine the in vitro antioxidant potential of four extruded and domestically prepared composite flour formulations developed by composting selected locally available grain varieties in Sri Lanka. The potential of the flour extracts to scavenge free radicals were evaluated by performing DPPH, ABTS, and FRAP assays. Furthermore, the antimicrobial activities of the flour formulations against selected Gram-positive and Gram-negative pathogenic microorganisms were comparatively evaluated using agar well diffusion and disk diffusion assays. Ethanol and water extracts of the samples were evaluated for their antimicrobial potential. The results showed that extruded samples possessed high antioxidant properties than samples prepared using the conventional cooking. Furthermore, the antioxidant potential of the formulations evaluated using different assays was strongly correlated. Moreover, the formulations reported positive antimicrobial potential against tested Gram-negative and Gram-positive bacteria. The ethanol extracts of flour formulations exhibited higher susceptibility to tested microbes than that of water extracts while agar well diffusion resulted significantly high inhibition against pathogenic bacteria than that of agar disk diffusion method (). In overall, the highest inhibition zone of 17.64 mm was depicted by F4 against Salmonella, while the lowest diameter of 6.09 mm was depicted by F1 against Listeria. In conclusion, the developed flour formulations contained natural antimicrobial agents which can combat common food spoilage and pathogenic bacteria and can be promoted as value-added products with health benefits beyond nutrition.

Research Article

Extraction and Characterization of Cellulose from Broccoli Stems as a New Biopolymer Source for Producing Carboxymethyl Cellulose Films

The use of food and agricultural waste-derived carboxymethyl cellulose (CMC) has become of interest due to their biodegradability and cost-effectiveness. In the current research, cellulose was extracted from broccoli stems to produce carboxymethyl cellulose using a carboxymethylation reaction via chloroacetic acid (CAA) and sodium hydroxide (5-10 M). The effects of different synthesis conditions on the degree of substitution (DS) and viscosity of the synthesized CMC powder were investigated. The mechanical properties, water vapor permeability (WVP), and colour of CMC films were also evaluated. The results showed that CMC with the highest DS value (0.60) and the highest viscosity of 0.5 Pa·s could be synthesized from broccoli stems at a concentration of 7.5 M NaOH and a cellulose-to-chloroacetic acid ratio of 1 : 1.2. At CMC concentration of 4 g/100 mL with 0.8 g/100 mL of glycerol, the films had the highest tensile strength (31.91 MPa), whereas with 1.2 g/100 mL glycerol, more flexible films with elongation at break of 27.56% were produced. CMC films with the highest WVP ( gm2·mmHg-1/day) were made with 6 g/100 mL of CMC and 1.8 g/100 mL of glycerol. This research proposes a new source of cellulose to produce biodegradable packaging materials to initiate a practical basis for food waste reuse.

Research Article

Lactic Acid Bacteria Isolates and the Microbiome of Cincalok, Tempoyak, and Mandai: A Traditional Fermented Food from Kalimantan Island, Indonesia

Indonesia has abundant traditional fermented food with various lactic acid bacteria (LAB), which can be developed into probiotics for pharmaceutical and functional food and feed products. This research is aimed at (1) obtaining and identifying LAB isolates and (2) studying the microbiome (bacterial diversity and abundance) of spontaneously-fermented traditional foods of Kalimantan Island, Cincalok, Tempoyak, and Mandai. To obtain LAB isolates, food samples were serially diluted and inoculated on MRS agar that contained 1% CaCO3 (MRSA). Isolates forming clear zones were purified and identified by DNA barcoding. The microbiome was studied using genomic-sequencing techniques and analysed for taxonomic composition. Seven pure isolates were obtained from Cincalok, two Tempoyak, and one Mandai. DNA barcoding revealed that the Cincalok seven isolates were Staphylococcus carnosus (strain HSP-S16), Tetragenococcus halophilus (FSB201), Corynebacterium phoceense, Vagococcus vulneris (SS1995), Enterococcus faecalis (S11-6), Pisciglobus halotolerans (C01), and Priestia filamentosa (P3.1); two from Tempoyak, Levilactobacillus brevis (E1D3BL1) and Lactiplantibacillus plantarum (UMCC-2996); and one from Mandai, Staphylococcus cohnii (XAAS.x13; non-LAB). The T. halophilus, E. faecalis, P. halotolerans, L. brevis, and L. plantarum belong to LAB. The P. halotolerans from Cincalok and non-LAB in these three fermented foods were the first documented report. The microbiome revealed the dominance of Firmicutes phyla in the fermented foods, with 93% in Cincalok, 89.94% in Tempoyak, and 60.32% in Mandai. On the genus level, Cincalok was dominated by Tetragenococcus 40.33%, Anaerococcus 23.29%, Vagococcus 9.27%, and Lactobacillus 6.84%. Meanwhile, Tempoyak was dominated only by Lactobacillus 89.94%. Mandai were dominated by Lactobacillus 31.97%, Proteus 17.14%, Aerococcus 16.85%, Mangrovibacter 15.15%, and Vagococcus 6.2%. However, Mandai’s microbiome LAB was not culturable/isolated on MRSA. The plausibility is that those unculturable LAB require coculturing with other bacteria and additional media components to grow on MRSA. This study is the first report regarding the microbiome of Cincalok, Tempoyak, and Mandai, along with their culturable LAB isolates.

International Journal of Food Science
 Journal metrics
See full report
Acceptance rate11%
Submission to final decision133 days
Acceptance to publication20 days
CiteScore5.200
Journal Citation Indicator0.580
Impact Factor4.0
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.